In the Medical Spotlight: Antibody-Drug Conjugates in Advanced HER2-Positive Gastric/Gastroesophageal Junction Cancer

> June 30, 2023 Barcelona, Spain

Welcome and Introductions

Mar Iglesias, MD

Associate Professor Pathology Department Hospital del Mar Universitat Pompeu Fabra Barcelona, Spain

John L. Marshall, MD

Chief, Hematology and Oncology Professor of Medicine and Oncology Director, Otto J Ruesch Center for the Cure of Gastrointestinal Cancers Lombardi Comprehensive Cancer Center Georgetown University Washington, DC

Elizabeth Smyth, MD

GI Consultant Oncologist Oxford University Hospital NHS Foundation Trust Oxford, United Kingdom

Disclosures

John L. Marshall, MD

Consulting Fees: AstraZeneca, Bayer Corporation, Caris, Merck & Co., Inc., Pfizer, Seagen, Taiho Oncology Employee of an ineligible company: Indivumed

Mar Iglesias, MD

Consulting Fees: Astellas, Bristol Myers Squibb, Merck, MSD, Roche Research: Astellas

Elizabeth Smyth, MD

Consulting Fees: Amgen, Astellas, AstraZeneca, BeiGene, Bristol Myers Squibb, Daiichi Sankyo, Inc., Elsevier, Imdex, Merck, Novartis, Pfizer, SAI Med, Servier, touchONCOLOGY, Turning Point Therapeutics, Viracta, Zymeworks

Gastric Cancer: Global Challenges

Incidence

Age-standardised incidence rate (per 100000 population), both sex, 2019

(0,4.5]	(22.5,27]			
(4.5,9]	(27,31.5]			
(9,13.5]	(31.5,36]			
(13.5,18]	(36,40.5]			
(18,22.5]	(40.5,45]			

EDUCATION

Song Y. et al. *Sci Rep*. 2022;12(1):11542.

Death Rate

Age-standardised death rate (per 100000 population), both sex, 2019

Unmet Needs in G/GEJ Cancers

- Third most common cause of cancer deaths globally
- ~80% of patients present with metastatic or unresectable disease
- 5-year relative survival in US: 33%
 - Distant disease: 6%
 - Regional: 33%
 - Localized: 72%
- Goal of current initial treatment for AGC
 - Prolong survival
 - Reduce cancer-related symptoms
 - Improve QoL
- Biomarkers: HER2, MSS/MMR status, PD-L1 expression
 - When to test? How do they guide treatment?

Li JJ, et al. Biomolecules. 2023;13(5):796.

A New World With Antibody-Drug Conjugates

HER2 Heterogeneity: Clinical Implications

Mar Iglesias, MD

Index

- Gastric cancer and biomarkers
- EGFR Pathway and HER2 alterations
- HER2 testing:
 - Determination
 - Samples
 - Report and heterogeneity
 - Methods

Gastric Cancer and Biomarkers

Lordick F, et al. Ann Oncol. 2022;33(10):1005-1020. Nakamura Y, et al. Nat Rev Clin Oncol. 2021;18(8):473-487.

EGFR Pathway and HER2 Alterations

Wang J, et al. Signal Transduct Target Ther. 2019;4:34.

EGFR Pathway and HER2 Alterations (cont)

Uribe ML, et al. Cancers (Basel). 2021;13(11):2748.

EGFR Pathway and HER2 Alterations

Oh DY, Bang YJ. Nat Rev Clin Oncol. 2020;17(1):33-48.

HER2 Testing

- Principal aspects for HER2 testing:
 - Choice of **scoring criteria** different from breast
 - Choice of **sample** with regards to cancer heterogeneity
 - Choice of HER2 **evaluation methods** – IHC and ISH first

	JOURNAL OF C	LINICAL ONCOLOGY	ASCO	SPEC	CIAL	ARTICLE
		HER2 Testing and Clinical Decision Making in				
		Gastroesophageal Adenocarcinoma: Guideline From the				
		College of American Pathologists, American Society for				
		Clinical Pathology, and the American Society of				
		Clinical Oncology Angela N. Bartley, Mary Kay Washington, Carol Colasacco, Christina B. Ventura, Nofisat Ismaila, Al B. Benson III, Alfredo Carrato, Margaret L. Gulley, Dhanpat Jain, Sanjay Kakar, Helen J. Mackay, Catherine Streutker, Laura Tang, Megan Troxell, and Jaffer A. Ajani				
A	Author affiliations appear at the end of this article.					
	Published online shead of print at					

Bartley AN, et al. J Clin Oncol. 2017;35(4):446-464. Grillo F, et al. World J Gastroenterol. 2016;22(26):5879-5887.

Histopathology 2008, 52, 797-805. DOI: 10.1111/j.1365-2559.2008.03028.x

Assessment of a HER2 scoring system for gastric cancer: results from a validation study

M Hofmann,¹ O Stoss,² D Shi,³ R Büttner,^{2,4} M van de Vijver,⁵ W Kim,⁶ A Ochiai,⁷ J Rüschoff^{1,2} & T Henkel²

Hofmann M, et al. *Histopathology*. 2008;52(7):797-805.

Basolateral positivity

Scoring Criteria

Scoring Criteria

PIOVO[™] Bartley A

Scoring Criteria

- If HER2/CEP17 <2, but there are more than 6 copies of HER2 = Positive, amplified HIS
- If HER2/CEP17 <2, but there are fewer than 4 copies of HER2 = Negative, not amplified
- If HER2/CEP17 <2, and there are between 4 and 6 copies of HER2 = Inconclusive; read 20 more cores, and if inconclusive again:
 - Select other areas
 - Use another test to analyze chromosome 17
 - Use genomics

Scoring Criteria

Bartley AN, et al. *J Clin Oncol*. 2017;35(4):446-464. Viale G. HER2 in Gastric Cancer: ESMO Biomarker Factsheet. Accessed June1, 2023. https://oncologypro.esmo.org/education-library/factsheets-on-biomarkers/her2-in-gastric-cancer

- HER2-positive GC/GEJC are more frequently of intestinal type or mixed
- In mixed-type carcinomas, samples with a prevalence of intestinal-type areas should be selected when performing HER2 evaluation
- **Gastroesophageal carcinomas** tend to be more often HER2-positive (33%) compared to GC (21%) according to the ToGA trial and its post hoc exploratory analysis

Samples

Primary or metastases are valid

High concordance between primary and metastases

- Discordance rate: 1-14%
- Possible explanations for discrepancies:
 - Genetic drift or clonal selection of *HER2* mutations during neoplastic progression
 - Intratumor heterogeneity of HER2
 - Repeat *HER2* assessment in recurrent sites may be recommended in patients whose initial evaluation was *HER2*-negative
 - > 5.7% HER2-positive on biopsy of metastases (GASTHER 1 study)

Samples

Biopsy or surgical specimen are valid:

- Concordance rates ranging from 45.5-94%
- A probable explanation for false negative *HER2* status on biopsy is **heterogeneity**, whereas
- HER2 positivity on biopsy and not on surgical resections may be due to prolonged cold ischemia and/or over- or under-fixation in larger specimens

Samples

• If it is biopsy:

- Minimum 4 tumor fragments
- Ideal between 6 and 8 fragments
- Multi-block analysis has shown to increase sensitivity and accuracy
 - False negative rates for one-block analysis compared to multi-block analysis are between 7-10%
- Cytology cell block may be valid if you do not have a biopsy or surgical specimen

HER2 Heterogeneity

Heterogeneity in HER2 determination

- HER2 heterogeneity by IHC range from 39.0-75.4%
- Up to 34.3% between surgical specimens and biopsy specimens ("intratumoral heterogeneity")
- Up to 11% between primary gastric cancers and metastatic tumors ("intertumoral heterogeneity")

HER2 Heterogeneity

Clinical significance of HER2 heterogeneity

 Higher response rate and a deeper response vs heterogeneous HER2-positive gastric cancer

HER2 heterogeneity is a useful biomarker for predicting trastuzumab efficacy

Significantly longer PFS and OS in the homogeneous HER2-positive group

Yagi S, et al. Gastric Cancer. 2019;22(3):526.

HER2 Heterogeneity

 A minimum of 40% HER2+ tumor cells and a HER2 amplification ratio of ≥3.0 were calculated as optimized thresholds for predicting benefit from trastuzumab

Report

HER2 by immunohistochemistry result Negative (score 0) Negative (score 1+) Equivocal (score 2+) Positive (score 3+) Indeterminate (explain): Negative (not amplified) Positive (and all field) Indeterminate (explain): Vumber of cells counted: Using dual-probe assay HER2 (ERBB2) to CEP17 ratio: Vareage number of HER2 (ERBB2) signals per cell: Using of number of HER2 (ERBB2) signals per cell: Name of number of HER2 (ERBB2) signals per cell: HER2 (ERBB2) genomic test (specify findings, eg. gene amplification, nucleotide sequence of specific mutation(s)) Negative Negative	Key Reporting Elements	Methods		
Positive (score 3+) Indeterminate (explain):	HER2 by immunohistochemistry result Megative (score 0) Negative (score 1+) Equivocal (score 2+)	HER2 protein expression by immunohistochemistry FDA cleared (specify test/vendor): Laboratory-developed test		
HB2 (ERBB2) by ISH result 4B3 Negative (not amplified) A0485 Nogative (amplified) NOB Using dual-probe assay NOB HER2 (ERBB2) to CEP17 ratio: Using dual-probe assay NOB HER2 (ERBB2) to CEP17 ratio: Using single-probe assay	Positive (score 3+)	Specify primary antibody		
Positive (amplified) Indeterminate (explain): Number of cells counted: Using dual-probe assay <i>HER2</i> (<i>ERBB2</i>) to CEP17 ratio: <i>HER2</i> (<i>ERBB2</i>) to CEP17 ratio: Other (specify): <i>HER2</i> (<i>ERBB2</i>) signals per cell: Range of number of <i>HER2</i> (<i>ERBB2</i>) signals per cell: Average number of <i>HER2</i> (<i>ERBB2</i>) signals per cell: Average number of <i>HER2</i> (<i>ERBB2</i>) signals per cell: Number of <i>HER2</i> (<i>ERBB2</i>) signals per cell: Number of <i>HER2</i> (<i>ERBB2</i>) signals per cell: Number of <i>HER2</i> (<i>ERBB2</i>) signals per cell: Number of observers: <i>HER2</i> (<i>ERBB2</i>) genomic test (specify findings, eg, gene amplification, nucleotide sequence of specific mutation[s]) Negative	<u>HER2 (ERBB2) by ISH result</u> <u>Negative (not amplified)</u>	 HercepTest A0485 No guidelines for HER2 		
Number of cells counted: CBTT Using dual-probe assay CBTT HER2 (ERBB2) to CEP17 ratio: Other (specify): Average number of HER2 (ERBB2) signals per cell: CBTT Using single-probe assay CBTT Average number of HER2 (ERBB2) signals per cell: Caboratory-developed test (specify FISH or ISH, probes, major instrument): Using single-probe assay	Positive (amplified) Indeterminate (explain):	SP3 heterogeneity assessment		
HER2 (ERBB2) to CEP17 ratio: Average number of HER2 (ERBB2) signals per cell: Range of number of HER2 (ERBB2) signals per cell: Using single-probe assay Average number of HER2 (ERBB2) signals per cell: Using single-probe assay Average number of HER2 (ERBB2) signals per cell: Range of number of HER2 (ERBB2) signals per cell: Range of number of HER2 (ERBB2) signals per cell: Number of observers: HER2 (ERBB2) genomic test (specify findings, eg, gene amplification, nucleotide sequence of specific mutation[s]) Negative	Number of cells counted: Using dual-probe assav	Other (specify):		
Average number of HER2 (ERBB2) signals per cell: FDA cleared (specify test/vendor): Range of number of HER2 (ERBB2) signals per cell: Laboratory-developed test (specify FISH or ISH, probes, major instrument): Average number of HER2 (ERBB2) signals per cell: Number of observers: Range of number of HER2 (ERBB2) signals per cell: Number of observers: HER2 (ERBB2) genomic test (specify findings, eg, gene amplification, nucleotide sequence of specific mutation[s]) Negative	HER2 (ERBB2) to CEP17 ratio:	HER2 (ERBB2) gene amplification by ISH		
Laboratory-developed test (specify FISH of ISH, probes, major Using single-probe assay Average number of HER2 (ERBB2) signals per cell: Range of number of HER2 (ERBB2) signals per cell: Number of observers: HER2 (ERBB2) genomic test (specify findings, eg, gene amplification, nucleotide sequence of specific mutation[s]) Negative	Average number of <i>HER2</i> (<i>ERBB2</i>) signals per cell:	FDA cleared (specify test/vendor):		
Average number of <i>HER2</i> (<i>ERBB2</i>) signals per cell: Range of number of <i>HER2</i> (<i>ERBB2</i>) signals per cell: <i>HER2</i> (<i>ERBB2</i>) genomic test (specify findings, eg, gene amplification, nucleotide sequence of specific mutation[s]) Negative	Using single-probe assay	instrument):		
Range of number of HER2 (ERBB2) signals per cell: HER2 (ERBB2) genomic test (specify findings, eg, gene amplification, nucleotide sequence of specific mutation[s]) HER2 (ERBB2) genomic test for amplification or mutation	Average number of <i>HER2</i> (<i>ERBB2</i>) signals per cell:	Number of observers:		
HER2 (ERBB2) genomic test (specify findings, eg, gene amplification, nucleotide sequence of specific mutation[s]) Laboratory-developed test method:	Range of number of <i>HER2</i> (<i>ERBB2</i>) signals per cell:	HER2 (ERBB2) genomic test for amplification or mutation		
Negative	HER2 (ERBB2) genomic test (specify findings, eg, gene amplification, nucleotide sequence of specific mutation[s])	Laboratory-developed test method:		
Positive Indeterminate (explain): The presence of heterogeneity (> 40% or ratio ≥ 3.0) should be	Negative Positive Indeterminate (explain):	The presence of heterogeneity (> 40% or ratio ≥ 3.0) should be		

included in our report

Methods

- Recommended methodology for HER2 assessment:
 - IHC
 - ISH
 - NGS
 - Liquid biopsy

Methods

Problematic issues on the determination include:

- Pre-analytic variables with particular emphasis on fixation

Standardized tissue handling

- Time from biopsy/surgery to fixation (cold ischemia)
- Type of fixation (10% neutral buffered formalin)
- Time of fixation (minimum: 8h; maximum: 48h)
- Freshly cut sections
- Quality assured laboratories with validated and standardized immunohistochemical testing kits

Method

- HER2 testing in GC should be performed by IHC as the first approach
- High concordance rates between IHC protein overexpression and ISH amplification (87-98%)
- Concordance studies between FISH, CISH, and SISH showed high concordance rates (91-100%)
- Bright field ISH techniques (CISH and SISH) may become the preferred assay in the future
 - Enable parallel evaluation of the microscopic morphology

Methods: IHC and ISH

- Use FDA-approved companion diagnostic tests
- If using method not approved by the FDA, it must be validated
- Use appropriate **controls**

prova

- Turnaround time should ideally not exceed 5 working days
- Centralized testing is recommended wherever possible
- All laboratories should be encouraged to participate in validated quality assurance programs

Methods: NGS

NCCN guidelines

- The use of IHC/ISH should be considered first, followed by additional NGS testing as appropriate
- NGS offers the opportunity to **assess numerous mutations simultaneously**, along with other molecular abnormalities
- Consider NGS when limited diagnostic tissue is available
- Comprehensive genomic profiling via a **validated NGS assay** performed in a CLIA-approved laboratory may be used

Methods: Liquid Biopsy

- = identification of genomic alterations of solid cancers by evaluating circulating tumor DNA (ctDNA) in blood
- May be used in patients with **advanced disease**, particularly those who are unable to have a clinical biopsy, **for disease surveillance**
- The detection of mutations/alterations in DNA shed can identify targetable alterations or the **evolution** of clones with altered treatment response profiles
- Use of validated NGS comprehensive genomic profiling performed in a CLIA-approved laboratory

Key Takeaways

- We should test *HER2* in every metastatic/advanced unresectable gastric cancer
- We should follow the current guidelines to test *HER2*
- Inform about heterogeneity of the expression *HER2*
- Options of other methods
 - NGS in tumor samples
 - Liquid biopsy for surveillance

Unmet Needs in Second-Line HER2+ Gastric/Gastroesophageal Junction Cancer

Elizabeth Smyth, MD

Anti-HER2 Therapy Is Global Standard for HER2-High AGC

Anti-HER2 therapy is recommended by all international gastric cancer guidelines

Anti-HER2 Therapy Is a Global Standard of Care for HER2-High Advanced Gastric Cancer

Addition of trastuzumab to CF/X: 1 response rate, PFS, and OS
Trastuzumab is most effective in IHC 3+ or IHC 2+ FISH-positive disease

Bang YJ, et al. Lancet. 2010;376(9742):687-697.

JACOB: Trastuzumab + Pertuzumab in HER2-Positive AGC, First-Line Treatment, Initial Results

• JACOB: No significant improvement in OS for trastuzumab + pertuzumab vs trastuzumab alone

CF/X, cisplatin, 5-fluorouracil or capecitabine.

JACOB: Long-Term Follow-Up

Tabernero J, et al. Gastric Cancer. 2023;26(1):123-131. Pietrantonio F, et al. Clin Cancer Res. 2023;29(3):571-580.

JACOB: Long-Term Follow-Up

HER2+ AGC Treatment: Why Were So Many Trials Negative?

Lorenzen S, et al. Eur J Cancer. 2015;51(5):569-576. Satoh T, et al. J Clin Oncol. 2014;32(19):2039-2049. Hecht JR, et al. J Clin Oncol. 2016;34(5):443-451.

Genomic Predictors of Resistance to Trastuzumab

- Retrospective analysis of MSKCC cohort
 - Predominantly stage IV gastroesophageal cancer (N = 295)
- 30% of HER2+ tumors lacked ERBB2 amplification or had co-mutations of the RTK/RAS/PI3K pathway
 - These patients had rapid progression on trastuzumab

Genomic Biomarkers in Esophagogastric

Janjigian YY, et al. Cancer Discov. 2018;8(1):49-58.

T-DM1 vs Taxane in HER2+ AGC: GATSBY

• GATSBY: No significant improvement in OS for trastuzumab emtansine vs taxane alone

	Taxane	T-DM1
ORR, %	19.6	20.6
mDOR, mo	3.7	4.3
mPFS, mo	2.0	2.7
mOS, mo	8.6	7.9

Thuss-Patience PC, et al. Lancet Oncol. 2017;18(5):640-653; Verma S, et al. N Engl J Med. 2012; 367:1783-1791.

HER2+ AGC Treatment: Dynamic Changes in HER2 Affect Efficacy of 2L Treatment

Pre and post trastuzumab biopsy

- A significant proportion of patients do not express HER2 in the tumor after trastuzumab treatment
 - Demonstrated retrospectively and prospectively
- The addition of paclitaxel to trastuzumab in a biomarker unselected population is not helpful

proportion

Trastuzumab Deruxtecan

High drug:antibody ratio ~8

- High potency payload with short systemic half-life
- Pronounced bystander killing effect

Suzuki M, et al. Clin Cancer Res. 2021;27(14):3970-3979. Aoki M, et al. Gastric Cancer. 2021;24(3):567-576.

DESTINY-Gastric01

	T-DXd (n = 125)	PC (n = 62)
Median age, y (range)	65 (34-82)	66 (28-82)
Female, %	24	24
ECOG PS 0 / 1, %	50 / 50	48 / 52
Primary site, % Stomach GEJ	86 14	89 11
Region, % ▪ Japan ▪ Korea	79 21	81 19
HER2 expression IHC 3+/IHC 2+, ISH+, %	77 / 23	76 / 24
Intestinal/ diffuse / other histological subtype	71/22/6	61 / 29 / 10
Prior systemic therapies ■ 2 / 3 ■ ≥ 4	53 / 27 20	61 / 29 10
 Prior treatment Trastuzumab Taxane Ramucirumab Irinotecan or other topoisomerase inhibitor Immune checkpoint inhibitor 	100 84 75 6 35	100 89 66 8 27

Shitara K, et al. N Engl J Med. 2020;382(25):2419-2430.

DESTINY-Gastric01

Overall Survival

mOS: 12.5 vs 8.4 mo HR = 0.59; *P* = 0.01

Progression-Free Survival

mOS: 5.6 vs 3.5 mo HR = 0.47

Response	T-DXd, (n = 119)	PC, (n = 56)
ORR, %	51	14

Jan 15, 2021

T-DXd FDA-approved for pts with locally advanced or metastatic HER2-positive gastric or GEJ adenocarcinoma who have received a prior trastuzumab-based regimen.

Shitara K, et al. *N Engl J Med*. 2020;382(25):2419-2430.

DESTINY-Gastric02

Unresectable or metastatic gastric or GEJ cancer; HER2+* **on biopsy after progression** on first-line trastuzumab-containing regimen ECOG PS 0/1 (N = 79)

*Defined as IHC 3+ or IHC 2+/ISH+

Primary EP: confirmed ORR by ICR

DG-02	Data Cutoff April 9, 2021 (N = 79)	Data Cutoff Nov 8, 2021 (N= 79)
ORR, %	38	42
CR, %	4	5
PR, %	34	37
SD, %	43	39
PD, %	16	16
Confirmed DCR, %	81	81
Median DOR, mo	8.1	8.1
Median TTR, mo	1.4	1.4

Dec. 19. 2022

Approved in the EU as a monotherapy for the treatment of adult patients with advanced HER2-positive gastric or GEJ adenocarcinoma who have received a prior trastuzumab-based regimen.

DESTINY-Gastric04: T-DXd vs ramucirumab + paclitaxel in HER2+ G/GEJ cancer after progression on a trastuzumab-containing regimen

Van Cutsem E, et al. Lancet Oncol. 2023:S1470-2045(23)00215-2.

Available at: https://classic.clinicaltrials.gov/ct2/show/NCT04704934

Treatment-Related Adverse Events with T-DXd

DG-01: TRAEs, %	T-DXd, n = 125 Any Grade/Grade 3/4, %	PC, n = 62 Any Grade/Grade 3/4, %	DG-02:	T-DXd (N = 79), %			
Nausea	<mark>63</mark> / 5	47 / 2	TRAEs, %	Gr 1/2	Gr 3	Gr 4	Gr 5
igstarrow neutrophil count	63 / <mark>51</mark>	35 / 24	Nausea	<mark>59</mark>	8	0	0
↓ appetite	60 / 17	45 / 13	Fatigue	38	4	0	0
Anemia	58 / 38	31 / 23	Vomiting	42	30	0	0
↓ platelet count	39 / 12	6 / 4	Diarrhea	35	1	0	0
igstarrow white cell count	38 / 21	35 / 11	↓ weight	28	4	0	0
Malaise	34 / 1	32 / 2	Constipation	29	0	0	0
Diarrhea	<mark>32</mark> / 2	32 / 4	 ↓ appetite Alopecia Anemia 	28	5	0	0
Vomiting	<mark>26</mark> / 0	8/0		24	0	0	0
Constipation	24 / 0	23 / 0		24	14	0	0
Pyrexia	24 / 0	16 / 0	↓ platelet	45	2	0	0
Alopecia	22 / 0	15 / 0	count	15	3	0	0
Fatigue	22 / 7	24 / 3	√neutrophil	9	3	5	0
↓ lymphocyte count	22 / 11	3 / 2	count	2	-	-	Ţ
Shitara K, et al. N Engl J Med. 2020;382(25):2419-2430; Van Cutsem E, et al. Lancet Oncol. 2023:S1470-2045(23)00215-2.							

Interstitial Lung Disease in DESTINY-Gastric-02

DG-02 <i>,</i> N = 79	Any TEAE, %	Drug-Related
Any	79	75
Grade ≥ 3	44	24
Serious TEAE	33	10
Discontinuation Associated with TEAE	15	10
Dose reduction associated with TEAE	17	14
Death associated with TEAE	11	2

• Drug-related ILD/pneumonitis

- 8 patients (10%)
 - > Grade 1: 2 patients (3%)
 - > Grade 2: 4 (5%)
 - > Grade 5: 2 (2%)
- Median time to onset: 80.5 days
- Median duration: 36 days
- 2 fatal cases
 - 171 days
 - 353 days

Management of ILD

			Corticosteroid Wanagement		
Suspected ADC-related ILD			Grade 1	Oral prednisolone, 0.5 mg/kg/d	
Discontinue; start corticosteroids according to grade			Grade 2	Oral prednisolone, 1 mg/kg/d, Increase to 2 mg/kg/d if no improvement	Contraction of the
Hist HF Pulmonary consulta Bronchoscopy and bron Differential diag infective source, IL pneur	cory and physical examples Laboratory tests RCT scan of the chest ation with pulmonary nchoalveolar lavage biopsy mosis: Exclude cancer D related to other dr monitis, or other cau	m y function testing ± transbronchial lung r progression, ugs, RT-induced ses	Grade 3 & grade 4	 Hospitalization, IV methylprednisolone, 0.5-1 g/d followed by oral prednisolone after 3d Oxygen supplementation for hypoxia Supportive treatment for prolonged corticosteroid use If corticosteroid-refractory, consider infliximab, MMF, IVIG, or other immunosuppressant 	NOVEMBER 2021
	Severity		Trea	tment modification	
ILD/Pneumonitis	Asymptomatic (grade 1)	 Interrupt until resol If resolved in ≤ 2 If resolved > 28 Consider cortice 	lved to grade 0 28 d of onset, r d of onset, rec osteroid treatm	, then: maintain dose luce dose 1 level ment as soon as ILD/pneumonitis is suspected	MAY 2022
	Symptomatic (≥ grade 2)	 Permanently dis Promptly initiat expected 	scontinue e corticosteroi	d treatment as soon as ILD/pneumonitis is	
Trastuzumab Deruxtecan PI.					
EDUCATION					

.

OCTOBER 2021

Management of Toxicities

• Grade 3

- Interrupt until resolved to grade 2 or less; maintain dose
- Grade 4

Neutropenia

 Interrupt until resolved to grade 2; reduce dose by one level ANC < 1.0 x 10⁹/L and temperature > 38.3°C or a sustained temperature Of ≥ 38°C for > 1h

⁻ebrile neutropenia

 Interrupt until resolves; reduce dose by one level

• LVEF > 45% and absolute decrease from baseline is 10% to 20%

• Continue treatment

• LVEF 40%-45%

eft Ventricular Dysfunction

- + ANC decrease > 10%: continue treatment; repeat LVEF assessment within 3 wks
- + ANC decrease 10%-20%: Interrupt treatment; repeat LVEF assessment within 3 wks; if LVEF has not recovered to within 10% from baseline: permanently discontinue
- Symptomatic CHF
- LVEF <40% or ANC decrease from baseline >20%
 - Interrupt treatment; repeat LVEF assessment within 3 wks; If LVEF of <40% or ANC decrease from baseline of >20% is confirmed: permanently discontinue
- Symptomatic CHF
- Permanently discontinue

Emerging ADCs

Disitamab Vedotin (RC48): HER2-Directed ACC

SYSA1801: Claudin 18.2-Directed ADC

Shi F, et al. Drug Deliv. 2022;29(1):1335-1344. Xu Y, et al. Gastric Cancer. 2021;24(4):913-925. Wang Y, et al. ASCO 2023. Abstract 3016.

Will Changes in First Line Affect Second Line

HER2+ AGC Treatment: Balance Shift

Lorenzen S, et al. Eur J Cancer. 2015;51(5):569-576. Satoh T, et al. J Clin Oncol. 2014;32(19):2039-2049. Hecht JR, et al. J Clin Oncol. 2016;34(5):443-451.

Current Conundrums and Emerging Directions

John L. Marshall, MD

What a Difference a Decade Makes...

2010

- Cancer is clonal
- All cancer is the same
- Immune therapies will never work
- Gene testing for some
- Randomized phase 3 trials
- Microbiome is disgusting
- Cancer treatment is expensive
- We love our jobs

2020

- Cancer is polyclonal
- All cancer is different
- Immune therapies are miraculous
- Broad testing for many
- Small single-arm trials
- Microbiome is beautiful
- Cancer treatment is more expensive
- Highest burnout and suicide in medicine

Unequal Access, Unequal Standards

Molecular Profiling Guides Treatment in Advanced GC

1. Bang YJ, et al. Lancet. 2010;376(9742):687-697; 2. Gravalos C, et al. Ann Oncol. 2008;19(9):1523-1529; 3. Amonkar M. J Clin Oncol. 2019; 4. Liu X, et al. Path Research and Practice. 2020;216(4):152881; 5. Ahn S, et al. Mod Pathol. 2021;34(9):1719-1727; 6. Lee KW, et al. Clin Cancer Res. 2022;28(16):3489-3498; 7. Westphalen CB, et al. NPJ Precis Oncol. 2021;5(1):69; 8. Ahn S, et al. Mod Pathol. 2016;29(9):1095-1103; 9. Hong JY, et al. Transl Cancer Res.

2020;9(5):3367-3374

Why Is GI Cancer So Different?

- Metastatic disease ≠ Local disease
- Are neo-adjuvant strategies Met or local biology?
- Esophageal ≠ EGJ ≠ Gastric
- Squamous ≠ Adenocarcinoma

A Powerful Driver

A GI Cancer Driver

Let's Look at This Again...

The Role of the Microbiome

Historic Limited Successes with Targeted Therapies in Gastric Cancer

Study phase	Target	Intervention	ORR	OS benefit?	Potential Reasons:
TOGA ¹ /III	HER-2+	trastuzumab + chemo	47% (12% higher than chemo)	\checkmark	
DESTINY Gastric- 01 / II	HER-2+	trastuzumab deruxtecan	51% (37% higher than physician choice)	\checkmark	Wrong target?
TRIO-013/LOGiC ² III	HER-2+	lapatinib + chemo	53% (14% higher than chemo)	×	Resistance mechanisms?
METGastric ³ II/III	MET+/HER-2-	onartuzumab + chemo	41% (5% less than chemo)	×	Unselected patients?
RILOMET-1 ^{4 /} III	MET+/HER-2-	rilotumumab + chemo	30% (9% less than chemo)	×	Molecular
SHINE ^{5 /} II	FGFR2+	FGFR1-3 inhibitor	-	X (PFS)	heterogeneity
FIGHT ^{6 /} II	FGFR2b+	bemarituzumab + chemo	53% (13% higher than chemo)	\checkmark	
EXPAND ^{7 /} III	Unselected (EGFR)	cetuximab + chemo	30% (1% higher than chemo)	×	
REAL3 ^{8 /} III	Unselected	panitimumab + chemo	46% (4% higher than chemo)	×	

1. Bang Y, et al. *Lancet*. 2010;376(9742):687-697; 2. Hecht JR, et al. *J Clin Oncol*. 2016;34(5):443-451; 3. Shah MA, et al. *J Clin Oncol*. 2015;33(33):3874-3879; 4. Cunningham D, et al. *J Clin Oncol*. 2015;33(15_suppl):4000; 5. Bang YJ, et al. *J Clin Oncol*. 2015;33(33):3858-3865; 6. Catenacci DVT, et al. *J Clin Oncol*. 2021;39(15_suppl):4010; 7. Lordick F, et al. *Lancet Oncol*. 2013;14(6):490-499; 8. Waddell T, et al. *Lancet Oncol*. 2013;14(6):481-489.

Capturing Temporospatial Heterogeneity

Heterogeneity

Genomic & Non-genomic Heterogeneity

> Functional Heterogeneity

Stemness Heterogeneity neity

Microenvironment Heterogeneity

Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma

- Frequent baseline heterogeneity in targetable genomic alterations in GEA
- Current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease
- Routine profiling of metastatic lesions and/or cfDNA should be systematically evaluated

ctDNA Has the Potential to Predict Treatment Efficacy

Trastuzumab deruxtecan

• Approved for HER2-amplified gastric cancer (IHC2+/FISH+ or IHC 3+) based on Destiny-Gastric01

Destiny-Gastric01 post hoc exploratory ctDNA analysis

Liquid biopsy	N	Response Rate, %
ERBB2 amplified	71	60.6
ERBB2 copy number >6	33	75.8
ERBB2 copy number < 6	76	40.8
ERBB2 non-amplified	38	34.2 /

Other studies with anti-HER2-directed therapy also demonstrate plasma ERBB2 amplification correlates with responses and survival

Bemarituzumab

 Improved OS 1st line when added to chemovin FGFR2b+ gastric cancer patients based on FIGHT

Pts who lack plasma amplification still	Profile	PFS HR (95% CI)	OS HR (95% CI)		
may benefit False negatives? Low shedding?	`Tumor IHC+/ctDNA-	0.63 (95% CI 0.4-0.99)	0.66 (95% CI 0.39-1.12)		
Dilution? Poor sensitivity assay?	Tumor IHC+/ctDNA+	0.15 (95% CI 0.02-1.18)	0.10 (95% CI 0.01-0.83)		

FIGHT subgroup analysis

Catenacci DVT, et al. J Clin Oncol. 2021;39(15 suppl):4010.

ctDNA May Identify Emerging Resistance Mechanisms

Potential application

- Guide subsequent targeted therapies on progression
- Facilitate novel therapeutic discovery
- Predict responses to subsequent therapies

EDUCATION

Kim ST, et al. Ann Oncol. 2018;29(4):1037-1048. Wang DS, et al. Gut. 2019; 68(7):1152-1161.

- Emerging MYC and new MET amplification
- Other resistance mutations reported in literature:
 - EGFR amplifications
 - PIK3CA/R1/C3
 - ERBB2/4 mutations
 - NF1 mutations

Investigational/Emerging HER2-Targeting Options

Select Novel HER2-Directed Strategies

Strategy	Selected Agents
Monoclonal antibodies (with augmented ADCC)	Margetuximab
Bispecific antibodies	ZW25
Tyrosine kinase inhibitors	Tucatinib
	Neratinib (+ trastuzumab or cetuximab)
Immunotherapy combinations	Numerous

HER2 + IO

Why did this work in GEJ/Gastric and not Breast?

Select Novel Immunotherapy Combinations for HER2-Positive Gastric Cancer

Study	Identifier	Regimen	Phase
MAHOGANY	NCT04082364	Margetuximab ± PD-1 inhibitor ± chemotherapy ± dual checkpoint inhibitor	/
INTEGA	NCT03409848	Ipilimumab or FOLFOX + nivolumab + trastuzumab	Ш
DESTINY-Gastric03	NCT04379596	Trastuzumab deruxtecan ± chemotherapy ± durvalumab	lb/II
DESTINY-Gastric04	NCT04704934	Trastuzumab deruxtecan vs ramucirumab + paclitaxel	III
MOUNTAINEER-02	NCT04499924	Tucatinib + trastuzumab or placebo + ramucirumab + paclitaxel	/
	NCT04276493	Zanidatamab + chemotherapy ± tislelizumab	I/II

IO Biomarkers

• MSI-H

- 57% RR (KN-059)
- PDL-1
 - Higher is better
- TMB
 - Higher is better

MSI-H Tumors Are Not Created Equal

Hall. ASCO GI 2019. Abstr 505.

The Theory Behind TMB

More Mutations

More Neo-Antigens

More Immune Response

The Big Unknown

Number of Mutations

Immune Response

Particular Mutations

Precision Medicine

Prospective incorporation of molecular profiling will transform global cancer care

Maturation of Precision Medicine

The New Order of Clinical Research

- Phase 3 trials are less necessary
- Drugs are approved for biomarkers, not cancer types
- Guidelines may be just as important as regulatory approval

Why DNA Mutations Only Tell Part of the Story

Multi-Omics

Thies J. Soil Biota. 2015:10.1016/B978-0-12-415955-6.00006-2.

Standard of Biobanking: It Is All About the Tissue

- Exact documented and very short tissue cold ischemia times of < 12 min (mean 7 min)
- Exact tissue localization and standardized fixation
- ✓ Complete biospecimen sets
- Highest tissue quality monitored by visual inspection, H&E staining,
- and microscopic assessment
- Native and rapid fluid preparations
- Complete specimen data
- Complete clinical data
- Patients' confidentiality assured following international standards

The Precision Medicine Era

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

Now Published

Clinical Validation of a Machine-learning-derived Signature Predictive of Outcomes from First-line Oxaliplatin-based Chemotherapy in Advanced Colorectal Cancer LT

Jim P. Abraham¹, Daniel Magee¹, Chiara Cremolini², Carlotta Antoniotti², David D. Halbert¹, Joanne Xiu¹, Phillip Stafford¹, Donald A. Berry³, Matthew J. Oberley¹, Anthony F. Shields⁴, John L. Marshall⁶, Mohamed E. Salem⁶, Alfredo Falcone², Axel Grothey⁷, Michael J. Hall⁸, Alan P. Venook⁹, Heinz-Josef Lenz¹⁰, Anthony Helmstetter¹, W. Michael Korn¹, and David B. Spetzler¹

ABSTRACT

Introduction

Purpose: FOLFOX, FOLFIRI, or FOLFOXIRI chemotherapy with bevacizumab is considered standard first-line treatment option for patients with metastatic colorectal cancer (mCRC). We developed and validated a molecular signature predictive of efficacy of oxaliplatin-based chemotherapy combined with bevacizumab in patients with mCRC.

Experimental Design: A machine-learning approach was applied and tested on clinical and next-generation sequencing data from a real-world evidence (RWE) dataset and samples from the prospective TRIBE2 study resulting in identification of a molecular signature, FOLFOXai. Algorithm training considered time-to-next treatment (TTNT). Validation studies used TTNT, progression-free survival, and overall survival (OS) as the primary endpoints.

Results: A 67-gene signature was cross-validated in a training cohort (N = 105) which demonstrated the ability of FOLFOX*ai* to distinguish FOLFOX-treated patients with mCRC with increased benefit from those with decreased benefit. The signature was predictive of TTNT and OS in an independent RWE dataset of 412 patients who had received FOLFOX/bevacizumab in first line and inversely predictive of survival in RWE data from 55 patients who had received first-line FOLFIRI. Blinded analysis of TRIBE2 samples confirmed that FOLFOXai was predictive of OS in both oxaliplatin-containing arms (FOLFOX HR, 0.629; P = 0.04and FOLFOXIRI HR, 0.483; P = 0.02). FOLFOXai was also predictive of treatment benefit from oxaliplatin-containing regimens in advanced esophageal/gastro-esophageal junction cancers, as well as pancreatic ductal adenocarcinoma.

Check for updates

Conclusions: Application of FOLFOX*ai* could lead to improvements of treatment outcomes for patients with mCRC and other cancers because patients predicted to have less benefit from oxaliplatin-containing regimens might benefit from alternative regimens.

Over the last 2 decades, conventional chemotherapies (e.g., oxali-

Abraham JP, et al. Clin Cancer Res. 2021;27(4):1174-1183.

First Clinically Validated AI-Driven Frontline Chemotherapy Predictor

- Median OS ↑ = 17.5 months in patients treated in manner consistent with Al predictor vs patients treated counter to the prediction
- Demonstrated ~71% difference in median OS for patients in the FOLFOX 1st arm compared to the FOLFIRI 1st arm
- Demonstrated the impact of how FOLFOX and FOLFIRI are sequenced in patient treatment
- 2 independent data sets:
 - 412 manually curated cases with RWE
 - 149 cases analyzed retrospectively from the randomized, prospective phase 3 TRIBE2 study

mCRC RWE FOLFIRI+BV-FOLFOX+BV

	AI Results Indicate:	
	FOLFOX + BV 1 st → FOLFIRI + BV 2 nd (FOLFOX/BV RWE cohort)	FOLFIRI + BV 1 st → 2 nd FOLFOX + BV (FOLFIRI/BV RWE cohort)
OS When Patient Received: FOLFOX/BV 1 st → FOLFIRI + BV 2 nd	42.0 months	18.7 months
OS When Patient Received: FOLFIRI+BV 1 st → FOLFOX 2 nd	24.5 months	34.4 months

Abraham JP, et al. *Clin Cancer Res.* 2021;27(4):1174-1183.

Our Message Worth Sharing

Our Message Worth Sharing

Dr. Iglesias

• Overcoming *HER2* heterogeneity

Dr. Smyth

• Improving outcomes early upon progressive disease

Dr. Marshall

• A new standard of care on the horizon

Visit ProvaEducation.com to explore other CE programs!

THANK YOU!

