New Options to Reduce Cardiovascular Events in ASCVD

Online CME Activity

Table of Contents

Introduction Michael Miller, MD

3-16

Central Role of Triglyceride-rich Lipoproteins (TGRL) in CVD Residual Risk beyond Statin Therapy Børge G. Nordestgaard, MD, DMSc 17-47

Biologic Basis for TGRL Modulation in Reducing AtherosclerosisR. Preston Mason, PhD48-100

Reduction of Cardiovascular Events with Icosapent Ethyl– Intervention Trial (REDUCE-IT) Deepak L. Bhatt, MD, MPH

101-143

Michael Miller, MD

Professor of Cardiovascular Medicine, Epidemiology & Public Health University of Maryland School of Medicine Director, Center for Preventive Cardiology University of Maryland Medical Center Baltimore, MD

Introduction

AHA Scientific Statement: Prevalence of Elevated TG

20+ yrs	>150 mg/dL	>200 mg/dL	>500 mg/dL
Overall	31%	16%	1.1%
Men	35%	20%	1.8%
Women	27%	13%	0.5%
Heritage			
Mexican	35%	20%	1.4%
African	16%	8%	0.4%
European	33%	18%	1.1%

Miller M et al. Circulation. 2011;123:2292-333.

Major Statin Trials: Despite Benefit, Substantial Residual CV Risk Remains

¹4S Group. *Lancet.* 1994;344:1383-9. ²LIPID Study Group. *N Engl J Med.* 1998;339:1349-57. ³Sacks FM et al. *N Engl J Med.* 1996;335:1001-9. ⁴HPS Collaborative Group. *Lancet.* 2002;360:7-22. ⁵Shepherd J et al. *N Engl J Med.* 1995;333:1301-7. ⁶Downs JR et al. *JAMA.* 1998;279:1615-22. ⁷Ridker PM et al. *N Engl J Med.* 2008;359:2195-207.

PROVE IT-TIMI 22: Elevated TG Levels Increase Risk of a Coronary Event, Despite LDL-C at Goal

Despite achieving LDL-C <70 mg/dL with a high-dose statin, patients with TG \geq 200 mg/dL have a 67% higher risk of coronary events*

*Death, myocardial infarction, or recurrent acute coronary syndrome [†]Calculated from adjusted hazard ratio of TG <200 mg/dL (95% CI) = 0.60 (0.45-0.81) Miller M et al. *J Am Coll Cardiol*. 2008;51:724-30.

On Statin Rx, TG Levels Associate with Short- and Long-term CV Risk

Fasting TG levels are strongly linked to both short-term and long-term major CV event risk on background statin therapy, independent of LDL-C

*P for trend=0.03.

ACS=acute coronary syndrome; HTG=hypertriglyceridemia. Schwartz GG et al. J Am Coll Cardiol. 2015;65:2267-75.

Elevated TG (TRL): Drivers of CVD Risk

Lipid Based Non-lipid Based

Elevated TG: **1DL-TG** Partially Drives CVD Risk

Saeed A et al. J Am Coll Cardiol. 2018;72:156-69. Miller M. J Am Coll Cardiol. 2018;72:170-2.

Elevated TG: Remnants & APOC3 Partially Drives CVD Risk

Libby P. Circ Res. 2007;100:299-301.

Elevated TG: Non-Lipid Factors Driving CVD Risk

Reiner, Ž. Nat. Rev. Cardiol. 2017;14:401-411.

Unsuccessful Fibrate Outcome Studies with Statin Use

Study	CV Risk Profile	N	Daily Inter- vention	Statin Use	Baseline TG Level	Effect on TG Level	Primary Outcome	Primary Outcome Results
ACCORD	 T2DM Age 40-79 yrs w/ CVD or Age 55-79 yrs w/ ≥2 CV risk factors 	5518	Fenofibrate	Open-label simvastatin (mean dose: 22 mg)	162 mg/dL (median)	-26%	 Nonfatal MI or Stroke or CV death Mean f/u: 4.7 yrs 	 HR=0.92 (95% Cl, 0.79-1.08) P=0.32 ARR=NC (2.2% w/ fenofibrate vs 2.4% w/ placebo)
FIELD	• Age 50-75 yrs • T2DM	9795	Micronized fenofibrate 200 mg QD	Added during study in 2547 pts	154 mg/dL (median)	–30% at 1 year	 Nonfatal MI or CHD death Median f/u: 5 yrs 	 HR=0.89 (95% Cl, 0.75-1.05) P=0.16 ARR=1.4%

ARR=absolute risk reduction; NC=not calculated.

Adapted from Handelsman Y, Shapiro MD. Endocr Pract. 2017;23:100-12. Sacks FM et al. N Engl J Med. 2010;363:692-4.

Unsuccessful Niacin Outcome Studies with Statin Use

HPS2-THRIVE (-26% TG) Effect of ERN / LRPT on

Major Vascular Events*

Successful Outcome Studies with Statin Use (5-15% RRR)

IMPROVE-IT¹

FOURIER²

ODYSSEY Outcomes³

CI=confidence interval; Cor Revasc=coronary revascularization; EZ=ezetimibe; HR=hazard ratio; MACE=major adverse cardiovascular events; MI=myocardial infarction; NNT=number needed to treat; Simva=simvastatin; UA=unstable angina.

- 1. Cannon CP et al. N Engl J Med. 2015;372:2387-97.
- 2. Sabatine MS et al. N Engl J Med. 2017;376:1713-22.
- 3. Steg PG. Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab ODYSSEY OUTCOMES. March 10, 2018. http://www.acc.org/latest-in-cardiology/clinical-trials/2018/03/09/08/02/odyssey-outcomes.

JELIS: Successful Outcome Study with Statin Use (19%)

N=18,645 Japanese pts with TC ≥251 mg/dL prior to baseline statin Rx. Baseline TG=153 mg/dL. Statin up-titrated to 20 mg pravastatin or 10 mg simvastatin for LDL-C control.

*Primary endpoint: Sudden cardiac death, fatal and non-fatal MI, unstable angina pectoris, angioplasty, stenting, or coronary artery bypass graft. Yokoyama M et al. *Lancet.* 2007;369:1090-8.

CENTRAL ILLUSTRATION: Promising Therapies for Hypertriglyceridemia

Ganda, O.P. et al. J Am Coll Cardiol. 2018;72(3):330-43.

University of Copenhagen & Copenhagen University Hospital

Central Role of Triglyceride-rich Lipoproteins in CVD Residual Risk Beyond Statin Therapy

Børge G Nordestgaard Professor, Chief Physician, MD, DMSc

Conflict of Interest Disclosure: the Danish tax payer Consultancies or talks sponsored by AstraZeneca, Sanofi, Regeneron, Ionis, Akcea, Amgen, Kowa, Denka Seiken, Amarin

From triglyceride-rich lipoproteins to disease

Nordestgaard 2018

116,550 individuals from the Copenhagen General Population Study

Pedersen, Langsted, Nordestgaard JAMA Intern Med 2016; 176: 1834-1842

↑ LDL

↑ Cholesterol

↑ CVD

↑ Remnants
↑ TG

† Chylomicrons

 $\uparrow\uparrow\uparrow TG$

(^ Pancreatitis) ^^ Pancreatitis (^ CVD (^ CVD)

Anette Varbo MD PhD

Clinical focus on lipoproteins for CVD prevention

Nordestgaard Circ Res 2016; 118: 547-563 modified

	n	Number of events	
LDL cholesterol: increase of 39 mg/dl (1	mmol/l)		
Observational	108,554	2,210	
Genetic (APOB, HMGCR, LDLR, PCSK9)	95,908	4,155	• • • • • • • • • • • • • • •
Remnant cholesterol: increase of 39 mg/	/dl (1 mmol,	/l)	
Observational	108,508	2,219	Ю
Genetic (APOA5, GCKR, LPL, TRIB1)	97,745	4,199	
Lipoprotein(a) cholesterol: increase of 3	9 mg/dl (1 r	nmol/l)	
Observational	108,550	2,210	
Genetic (LPA)	103,715	4,425	├
Copenhagen General Populat	LO 1.5 2.0 2.5 3.0 3.5 Hazard ratio or causal risk ratio for myocardial infarction (95% CI)		

Copenhagen City Heart Study (CCHS)

Nordestgaard 2018

Copenhagen City Heart Study and Copenhagen General Population Study

Myocardial infarction

N=96,394 (Events = 3,287)

Copenhagen City Heart Study and Copenhagen General Population Study

Copenhagen City Heart Study and Copenhagen General Population Study

N=98,515 (Events = 14,547)

Remnant cholesterol

(= cholesterol content of triglyceride-rich lipoproteins)

Calculated: total cholesterol minus LDL-C minus HDL-C

Measured: direct automated assay available

Nordestgaard 2018

Nordestgaard 2018

Obesity \leftrightarrow diabetes \leftrightarrow metabolic syndrome \leftrightarrow remnant lipoproteins

Nordestgaard JACC 2017; 70: 1637-46

Freiberg, Nordestgaard 2011

Hazard ratio for ischemic heart disease per 39 mg/dL = 1 mmol/L change

Common variants associated with plasma triglycerides and risk for coronary artery disease **NATURE GENETICS** VOLUME 45 | NUMBER 11 | NOVEMBER 2013

Elevated Remnant Cholesterol Causes Both Low-Grade Inflammation and Ischemic Heart Disease, Whereas Elevated Low-Density Lipoprotein Cholesterol Causes Ischemic Heart Disease Without Inflammation Anette Varbo, Marianne Benn, Anne Tybjærg-Hansen and Børge G. Nordestgaard

Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction

European Heart Journal (2013)

Anders Berg Jørgensen¹, Ruth Frikke-Schmidt^{1,2}, Anders Sode West¹, Peer Grande³, Børge G. Nordestgaard^{2,4,5}, and Anne Tybjærg-Hansen^{1,2,5*}

NEJM 2014 ORIGINAL ARTICLE		NEJM 2014 ORIGINAL ARTICLE		
Loss-of-Function Mutations in APOC3 and Risk of Ischemic Vascular Disease	Other genetic studies with same	Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease		
Anders Berg Jørgensen, M.D., Ph.D., Ruth Frikke-Schmidt, M.D., D.M.Sc., Børge G. Nordestgaard, M.D., D.M.Sc., and Anne Tybjærg-Hansen, M.D., D.M.Sc.	conclusion:	The TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute*		
NEJM 2016 ORIGINAL ARTICLE		NEJM 2016 ORIGINAL ARTICLE		
Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators* Variants with large effects on blood lipids and the role of	TG-rich remnants cause cardiovascular disease	Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease Frederick E. Dewey, M.D., Viktoria Gusarova, Ph.D., Colm O'Dushlaine, Ph.D., Omri Gottesman, M.D., Jesus Trejos, M.S., Charleen Hunt, Ph.D.,		
cholesterol and triglycerides in coronary disease	- independent of	NEJM 2017 ORIGINAL ARTICLE		
Anna Helgadottir ^{1,2} , Solveig Gretarsdottir ¹ , Gudmar Thorleifsson ¹ , Eirikur Hjartarson ¹ , Asgeir Sigurdsson ¹ , NATURE GENETICS VOLUME 48 NUMBER 6 JUNE 2016	LDL-C and HDL-C	Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease		
Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease 2017		F.E. Dewey, V. Gusarova, R.L. Dunbar, C. O'Dushlaine, C. Schurmann, O. Gottesman, S. McCarthy, C.V. Van Hout, S. Bruse, H.M. Dansky, J.B. Leader,		

TNT trial (Treating to New Targets)

Risk of major cardiovascular events among patients receiving atorvastatin 10 mg

Vallejo-Vaz AJ.....Ray KK. Circulation 2018;138:770-781

TNT trial (Treating to New Targets)

Effect of atorvastatin 80 mg versus atorvastatin 10 mg on the risk of major cardiovascular events

Vallejo-Vaz AJ.....Ray KK. Circulation 2018;138:770-781

Lipids, Apolipoproteins, and Their Ratios in Relation to Cardiovascular Events With Statin Treatment

John J.P. Kastelein, MD, PhD; Wim A. van der Steeg, MD; Ingar Holme, PhD;

Circulation. 2008;117:3002-3009.

Plasma Triglycerides and Cardiovascular Events in the Treating to New Targets and Incremental Decrease in End-Points Through Aggressive Lipid Lowering Trials of Statins in Patients With Coronary Artery Disease

Ole Faergeman, MD, DMSc^{a,*}, Ingar Holme, PhD^b, Rana Fayyad, PhD^c, Sonal Bhatia, MD^c,

Am J Cardiol 2009;104:459-463

Increased Remnant Cholesterol Explains Part of Residual Risk of All-Cause Mortality in 5414 Patients with Ischemic Heart Disease

Anne-Marie K. Jepsen,^{1,2} Anne Langsted,^{1,2} Anette Varbo,^{1,2} Lia E. Bang,^{2,3} Pia R. Kamstrup,^{1,2} and Børge G. Nordestgaard^{1,2*} 593–604 (2016)

Elevated Triglyceride Level Is Independently Associated With Increased All-Cause Mortality in Patients With Established Coronary Heart Disease Twenty-Two-Year Follow-Up of the Bezafibrate Infarction Prevention Study and Registry

Robert Klempfner, MD; Aharon Erez, MD; Ben-Zekry Sagit, MD; Ilan Goldenberg, MD; Enrique Fisman, MD; Eran Kopel, MD; Nir Shlomo, MA; Ariel Israel, MD; Alexander Tenenbaum, MD, PhD *Circ Cardiovasc Qual Outcomes.* 2016;9:100-108 Other clinical studies with similar data / conclusion:

TG-rich remnants explain CV & mortality residual risk beyond statin therapy

- independent of LDL-C and HDL-C

Impact of Triglyceride Levels Beyond Low-Density Lipoprotein Cholesterol After Acute Coronary Syndrome in the PROVE IT-TIMI 22 Trial J Am Coll Cardiol 2008;51:724–30

Michael Miller, MD, FACC,* Christopher P. Cannon, MD, FACC,† Sabina A. Murphy, MPH,† Jie Qin, MS,† Kausik K. Ray, MD, MRCP,‡ Eugene Braunwald, MD, MACC,† for the PROVE IT-TIMI 22 Investigators

> Association of LDL Cholesterol, Non–HDL Cholesterol, and Apolipoprotein B Levels With Risk of Cardiovascular Events Among Patients Treated With Statins A Meta-analysis

> S. Matthijs Boekholdt, MD, PhD JAMA. 2012;307(12):1302-1309

Fasting Triglycerides Predict Recurrent Ischemic Events in Patients With Acute Coronary Syndrome Treated With Statins

Gregory G. Schwartz, MD, PhD,* Markus Abt, PhD,† Weihang Bao, PhD,‡ David DeMicco, PharmD,‡ David Kallend, MD,† Michael Miller, MD,§ Hardi Mundl, MD,† Anders G. Olsson, MD, PhD||¶

J Am Coll Cardiol 2015;65:2267-75

Residual Risk of Atherosclerotic Cardiovascular Events in Relation to Reductions in Very-Low-Density Lipoproteins

Patrick R. Lawler, MD, MPH; Akintunde O. Akinkuolie, MBBS, MPH; Paulo Harada, MD, PhD, MPH; Robert J. Glynn, ScD; Daniel I. Chasman, PhD; Paul M Ridker, MD, MPH; Samia Mora, MD, MHS

Lawler PR et al. J Am Heart Assoc. 2017 6 e007402

Unmet need for primary prevention in individuals with hypertriglyceridaemia not eligible for statin therapy according to European Society of Cardiology/European **Atherosclerosis Society guidelines: a** contemporary population-based study Madsen, Varbo, Nordestgaard Eur Heart J. 2018; 39: 610-619 Fraction of population (Density) 32% 0.5 -45%

Nonfasting Lipid Profiles

Fasting Lipid Profiles

Evidence-Driven

Belief-Driven

Nordestgaard JACC 2017; 70: 1637-46

Nordestgaard JACC 2017; 70: 1637-46

Endorsement of nonfasting lipid profiles by societies, guidelines, & statements					
Year	Region	Society/guideline/statement			
2017	US	<u>AACE/ACE</u> : American Association of Clinical Endocrinologists & American College of Endocrinology			
2016	Brazil	Consensus of five medical societies			
2016	Europe	<u>ESC/EAS</u> : European Society of Cardiology & European Atherosclerosis Society			
2016	Canada	CCS: Canadian Cardiovascular Society			
2016 2016	Canada Europe	<u>CHEP</u> : Canadian Hypertension Education Program <u>EAS/EFLM</u> : European Atherosclerosis Society & European Federation of Clinical Chemistry and Laboratory Medicine			
2014 2014	US UK	<u>VA/DoD</u> : Veterans Affairs & US Department of Defense <u>NICE</u> : National Institute for Health and Care Excellence			
2011	US	AHA: American Heart Association			
2009	Denmark	DSKB: Danish Society for Clinical Biochemistry			

Before 2009 essentially all societies, guidelines, and statements either required fasting before lipid profile measurement or did not mention requirements

Nordestgaard JACC 2017; 70: 1637-46

Biologic Basis for TGRL Modulation in Reducing Atherosclerosis

R. Preston Mason, PhD

CV Risk Factors and Common Pathophysiologic Processes

CV Risk Factors and Common Pathophysiologic Processes

The Forgotten Majority: Residual Burden of Events in the Statin "Megatrials"

Libby P. J Am Coll Cardiol. 2005;46:1225-8.

Secondary

High Primary Risk

"Triglycerides on the Rise: Should we Swap Seats on the Seesaw?"

Could Therapeutic Levels of Omega-3 EPA Slow Atherosclerotic Disease?

Effects of EPA on non-HDL-C and Inflammatory Markers in Patients with Elevated TGs

Bays HE et al. Am J Cardiovasc Drugs. 2013;13:37-46.

Reductions in hsCRP with EPA Enhanced with Intensive Statin Use

Median placebo-adjusted change (%) No Statin -20 -20 -40 -27.4 -27.4 -27.4 -2.7 -20 -2.7 -2

Bays HE et al. Am J Cardiovasc Drugs. 2013;13:37-46.

Lipid Therapy has Different Effects on hsCRP

Bays HE et al. Am J Cardiovasc Drugs. 2013;13:37-46; Dunbar RL et al. Lipids Health Dis. 2015:14:98; Ridker PM et al. N Engl J Med. 2008;359:2195-207; Bohula EA et al. 2015 Circulation. 2015;132:1224-33.

Potential Effects of Omega-3 on Plaque Development

		Pathological Parameters and Proc	esses in Atherosclerosis	
Circulating parameters	Endothelial cell dysfunction and activation	Inflammation, monocyte recruitment, and proteolysis	Lipid core and fibrous cap formation with ongoing inflammation	Plaque formation, progression, and thrombosis
		Beneficial Effects	of EPA	
↓ TG ↓ Non- HDL-C ↓ ApoB ↓ VLDL-C	 ↑ Antioxidant effects ↑ Endothelial function ↓ Cholesterol crystalline domains ↓ RLP-C 		 ↑ Fibrous cap thickness ↑ Lumen diameter ↓ Macrophages ↓ Foam cell formation ↓ Ongoing inflammation 	 ↑ Plaque stability ↓ Plaque formation and progression ↓ Plaque volume and vulnerability ↓ Arterial stiffness ↓ Platelet response ↓ Thrombosis
	.L			

Borow KM, Nelson JR, Mason RP. *Atherosclerosis*. 2015;242:357-66. Nemiroff RL. Supplement to *Contemporary OB/GYN*. 2016

Questions

- 1. Do Omega-3 FAs (EPA, EPA/DHA) have effects on atherosclerosis beyond TG reduction?
- 2. Are these effects of Omega-3 FAs different from other TG-lowering agents?
- 3. Are these effects of Omega-3 FAs enhanced with a statin?

Question 1

What effects do Omega-3 Fatty Acids and other TG-lowering agents have on **oxidation** of Apo-B containing particles (LDL, VLDL, sdLDL)?

LDL Oxidation Triggers Vascular Injury and Inflammation

Lipid Oxidation Levels Predict CV Events in 634 Patients with CAD

ApoB Containing Particles are Atherogenic

Comparative Effects of TGlowering Agents on Lipoprotein Oxidation:

Each agent was tested at 10 µM

Mason RP et al. J Cardiovasc Pharmacol. 2016;68:33-40.

Schematic Illustration of the Protective Effects of EPA on sdLDL Lipid Oxidation

Adapted from: Mason RP and Jacob RF. Diabetes. 2015;64(Suppl 1):A178-A179.

Comparative Effects of EPA and DHA on Oxidation in Different ApoB Particles

Mason RP et al. J Cardiovasc Pharmacol. 2016;68:33-40.

Biophysical Analysis: EPA has Stable Extended Conformation in the Membrane while DHA has Disordering Effect

Sherratt SCR, Mason RP. Chem Phys Lipids 2018; 212:73-9.

DHA Disorders the Membrane Environment while EPA has no Effect on Membrane Fluidity

*P<0.05 vs control (vehicle) treatment. [†]P<0.05 vs cognate (equimolar) DHA treatment.

Mason et al. Biochim Biophys Acta. 2016;1858:3131-40.

EPA and DHA have Distinct Roles in Human Physiology Mediated by Membrane Interactions

Question 2

What effects do Omega-3 FAs and other TGlowering agents have on oxidation of the membrane, leading to cholesterol crystals?

Cholesterol Crystals Associated with Atherosclerosis and Cell Death

Kellner-Weibel G, Mason RP, et al. Arterioscler Thromb Vasc Biol. 1999;19:1891-8.

Cholesterol Crystals Trigger IL-1ß Formation

 \frown

Membrane Lipid Oxidation and Cholesterol Domains with Atherosclerosis

Mason RP and Jacob RF. Circulation. 2003;107:2270-3.
Characterizing Membrane Cholesterol Crystalline Domains by X-ray Diffraction

Mason RP et al. J Biol Chem. 2006;281:9337-45.

Effects of TG-lowering Agent on Cholesterol Crystalline

 Comparison of Vitamin E, EPA, Fenofibrate, Niacin, and Gemfibrozil

Mason RP and Jacob RF. Biochim Biophys Acta. 2015;1848:502-9.

EPA, But Not Other TG-lowering Agents, Inhibit Lipid Oxidation & Cholesterol Domain Formation

EPA Inhibits Membrane Lipid Peroxidation in a Dosedependent Fashion

**P<0.001 vs vehicle-treated control. [†]P<0.001 vs 1.0 μM EPA. [§]P<0.001 vs 2.5 μM EPA. [¶]P<0.05 vs 5.0 μM EPA. (Student-Newman-Keuls multiple comparisons test; overall ANOVA: P<0.0001, F=561.62). Values are mean ± SD (N=6). Mason RP and Jacob RF. *Biochim Biophys Acta.* 2015;1848:502-9.

Effect of Structure on Antioxidant Activity of EPA in Membranes

*P<0.001 vs vehicle-treated control. [†]P<0.001 vs glucose-treated control. [§]P<0.001 vs EA. [¶]P<0.001 vs ETE. (Student-Newman-Keuls multiple comparisons test; overall ANOVA: P<0.0001, F=248.73). Values are mean ± SD (N=6).

Question 3

What effects do Omega-3 Fatty Acids and statins have on endothelial dysfunction?

Nitric Oxide Is a Key Mediator of Vascular Protection

Behrendt D and Ganz P. *Am J Cardiol.* 2002;90(10C):40L-48L. Vita JA. *J Card Fail.* 2003;9(5 Suppl Nitric Oxide):S199-S204.

Combined Effects of EPA and Atorvastatin on Human Endothelial Function after Treatment with Oxidized LDL

Atorvastatin active metabolite was used in this study. Values are mean ± SD (N=3-6). *P<0.05 and ***P<0.001 vs oxLDL. [†]P<0.01 vs oxLDL + EPA. [§]P<0.001 vs oxLDL + Atorv. Mason RP et al. *Biomed Pharmacother*. 2018;203:1231-7. **Question 4**

What effects do Omega-3 Fatty Acids and other TG-lowering agents have on HDL function?

Structure and Benefits of HDL

Mason RP and Sherratt SCR. WCIRDC Poster Presentation. Burbank, CA. 2018.

Effects of EPA on HDL Function

- Increased HDL-associated PON1 activity
- Enhanced cholesterol efflux capacity in macrophages
- Reduced VCAM-1 expression in endothelial cells
- Increases resolvin E3 production in endothelial cells

EPA Inhibits HDL Oxidation as Compared to Fenofibrate or Niacin

**P<0.001 vs vehicle. [§]P<0.001 vs Fenofibrate or Niacin. (Student-Newman-Keuls multiple comparisons test; overall ANOVA: P<0.0001, F=833.86). Values are mean ± SD (N=3). Mason RP et al. European Atherosclerosis Society. 2018.</p>

Effects of EPA and DHA on Oxidation of HDL

Time Point (hr)

Effect of TG-lowering Agents on HDL Mediated Endothelial Function Following Oxidation

*P<0.05 and ***P<0.001 vs control. [†]P<0.001 vs vehicle + oxHDL or Fenofibrate + oxHDL. (Student-Newman-Keuls multiple comparisons test; overall ANOVA: P<0.0001, F=61.063); values are mean ± SD (N=4-6).

Mason RP et al. European Atherosclerosis Society. 2018.

HDL-C as a CV Therapy?

Increase HDL *without* reducing inflammation and oxidative stress

Improve HDL quality by reducing inflammation and oxidative stress

Mason RP et al. European Atherosclerosis Society. 2018.

Are Fish Oil Dietary Supplements Appropriate for CV Patients?

Fish Oil Dietary Supplements

- Leading DS taken by US adults is fish oil¹
 - 19 million fish oil DS consumed each month¹
- ~80% of PharmDs and MDs who recommend fish oil supplements think, mistakenly, that they are FDAapproved OTC²
 - 30% of PharmDs and 22% of MDs believe Rx and DS are similar in strength and content²

"Omega-3 Supplements: In Depth". NCCIH. N.p., 2009. Web. 7 Apr. 2016.
Fairleigh Dickinson University's Public Mind™ Poll, Omega-3 Physician/Pharmacist Study, March 2013.

Dietary FO Supplements Are a By-product of Industrial Extraction Procedures

www.akerty.com - FOMJAD

Fatty Acid Content of Leading US Fish Oil Supplement

Mason RP and Sherratt SCR. Biochem Biophys Res Commun. 2017;483:425-9.

Saturated Fatty Acid Content in Fish Oil Supplement Results in Solid Mass following Isolation

Supplement Total Oxidation Values Exceed International Thresholds

International threshold for oxidation (US Council for Responsible Nutrition. Voluntary Monograph: Omega-3 DHA, Omega-3 EPA, Omega-3 DHA & EPA (2006). Available at: http://www.crnusa.org/pdfs/O3FINALMONOGRAPHdoc.pdf. [Date of access: 09/04/2015].

Adapted from: Mason RP and Sherratt SCR. Biochem Biophys Res Commun. 2017;483:425-.9

Achieving a Recommended 4 g Daily Dose of Omega-3 with Common Fish Oil Supplements

Fish Oil Supplement Claims Are Inaccurate and Overstate Actual Content

Oxidized Fish Oil Negatively Impacts Key Lipid Factors

PV of 18 mEq/kg and TOTOX 45.Statistical Indicator: *P<0.05. (Values are mean ± SD.) Source: Rundblad A et al. *Br J Nutr*. 2017;117:1291-8.

Environmental and Processing Contaminants Found in Supplements Are Harmful to Humans

- Heavy metals
 - -Mercury, Lead
- Dioxins, dibenzofurans, dioxin-like polychlorinated biphenyls (PCBs)

"Fish oils extracted from captured marine fish species did not meet the requirements for human consumption...regarding the sum of dioxin and dI-PCB."¹

Summary of Fish Oil Dietary Supplements: Right for CV Patients?

1. US Food and Drug Administration. www.fda.gov/Food/DietarySupplements/default.htm. Updated April 4, 2016. Accessed Nov. 4, 2018. 2. Hilleman D and Smer A. *Manag Care*. 2016;25:46-52. 3. Mason RP and Sherratt SCR. *Biochem Biophys Res Commun.* 2017;483:425-9. 4. Albert BB et al. *Sci Rep.* 2015;5:7928. 5. Kleiner AC et al. *J Sci Food Agric*. 2015;95:1260-7. 6. Ritter JC et al. *J Sci Food Agric*. 2013:93:1935-9. 7. Jackowski SA et al. *J Nutr Sci.* 2015;4:e30. 8. Rundblad A et al. *Br J Nutr.* 2017;117:1291-8.

Conclusion

- Inflammation, oxidative stress, and endothelial dysfunction are causally related to atherosclerosis;
- Omega-3 FA (EPA) interferes with mechanisms of atherosclerosis at therapeutic concentrations as compared to other TG-lowering agents or omega-3 FA formulations. This may contribute to clinical benefits as seen in REDUCE-IT;
- Dietary supplements are not an appropriate substitute for FDA-approved and tested omega-3 fatty acids in patients.

Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial

Deepak L Bhatt, MD, MPH, Ph. Gabriel Steg, MD, Michael Miller, MD,

Eliot A. Brinton, MD, Terry A. Jacobson, MD, Steven B. Ketchum, PhD,

Ralph T. Doyle, Jr., BA, Rebecca A. Juliano, PhD, Lixia Jiao, PhD,

Craig Granowitz, MD, PhD, Jean-Claude Tardif, MD, Christie M. Ballantyne, MD,

on Behalf of the REDUCE-IT Investigators

Triglycerides a Causal Risk Factor?

Adapted with permission from Libby P. Triglycerides on the rise: should we swap seats on the seesaw? Eur Heart J. 2015;36:774-776.

ASCEND trial design

Eligibility:Age \geq 40 years; any DIABETES;no prior cardiovascular disease

Participants: 15,480 UK patients

Randomization:Omega-3 fatty acids 1 g capsule/day vs placebo(and aspirin 100 mg daily vs placebo)

Follow-up: Mean 7.4 years; >99% complete for morbidity & mortality

Adherence: Average adherence to omega-3 capsules 77%

20

Effect of omega-3 FA supplements on serious vascular events

ASCEND Study Collaborative Group, et al. N Engl J Med. 2018;379(16):1540-1550.

Effect of omega-3 FA supplements

Tabular meta-analysis of large randomized trials (>500 participants for at least 1 year)

10 trials including 77,917 participants 28,722 (37% with diabetes)

Mean follow-up 4.4 years

ASCEND: 15,480 participants with DM 7.4 years mean follow-up

Number of events (%)				
	Treatment	Control		RR (CI)
Coronary Heart Diseas	se			
Non-fatal MI	863 (2.8)	867 (2.9)	- #	0.99 (0.87- 1.12)
Coronary death	365 (1.3)	443 (1.5)		0.82 (0.68- 0.99)
Any CHD	1125 (3.9)	1214 (4.2)	\Diamond	0.92 (0.85- 1.00)
				p = 0.06
Stroke				
Ischaemic	536 (1.9)	524 (1.8)		1.02 (0.87- 1.20)
Haemorrhagic	114 (0.4)	108 (0.4)		1.05 (0.74- 1.49)
Unclassified/Other	99 (0.3)	104 (0.4)		0.95 (0.66- 1.36)
Anystroke	805 (2.6)	787 (2.6)	\mathbf{A}	1.02 (0.92- 1.13)
				p = 0.7
Revascularisation				
Coronary	2982 (9.8)	2985 (9.8)		1.00 (0.93- 1.07)
Non-Coronary	305 (2.7)	330 (2.9)		0.92 (0.75- 1.13)
Any revascularisation	3228 (10.6)	3258 (10.7)	\blacksquare	0.99 (0.94- 1.04)
				p = 0.6
Major Vascular Events				
Any	4584 (15.0)	4681 (15.4)	\mathbf{A}	0.97 (0.92- 1.01)
				p = 0.15
			I	

Fish oil supplements are widely used

- Estimated global market for omega-3 products was \$31 billion in 2015
- In a large UK prospective study, 31% of adults reported taking fish oils
- Estimates suggest 7.8% of US population (19 million people) take fish oil supplements
- Benefits claimed on the: heart, brain, weight, vision, inflammation, skin, pregnancy and early life, liver fat, depression, childhood behaviour, mental decline, allergies, bones...

Summary: Omega-3 FA supplementation in diabetes

- ASCEND is the largest and longest duration placebo-controlled randomized trial of omega-3 FA supplementation
- No effect on primary outcome of serious vascular events
- No effect on cancer, total or cause-specific mortality
- No safety concerns
- Guideline recommendations should be reconsidered

The VITamin D and OmegA-3 TriaL (VITAL): Principal Results for Vitamin D and Omega-3 Fatty Acid Supplementation in the Primary Prevention of Cardiovascular Disease and Cancer

- 25,871 participants (primary prevention)
- Median follow-up of 5.3 years
- Major cardiovascular event occurred in 386 participants in the n-3 group and in 419 in the placebo group
 - hazard ratio, 0.92; P=0.24
JELIS Suggests CV Risk Reduction with EPA in Japanese Hypercholesterolemic Patients

educe-it

*1.8 g/day

Adapted with permission from Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. *Lancet.* 2007;369:1090-1098.

EPA and DHA Have Differing Effects on Cellular Membranes

Reprinted with permission* from Sherratt SCR, Mason RP. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction. *Chem Phys Lipids*. 2018;212:73-79. [*https://creativecommons.org/licenses.org/by-nc/4.0/]

REDUCE-IT Design

* Due to the variability of triglycerides, a 10% allowance existed in the initial protocol, which permitted patients to be enrolled with qualifying triglycerides ≥135 mg/dL. Protocol amendment 1 (May 2013) changed the lower limit of acceptable triglycerides from 150 mg/dL to 200 mg/dL, with no variability allowance.

⁺ Median trial follow-up duration was 4.9 years (minimum 0.0, maximum 6.2 years).

Adapted with permission[‡] from Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial. *Clin Cardiol*. 2017;40:138-148. REDUCE-IT ClinicalTrials.gov number, NCT01492361. [[‡]https://creativecommons.org/licenses/by-nc/4.0/]

Key Inclusion Criteria – REDUCE-IT

- Age ≥45 years with established CVD (Secondary Prevention Cohort) or ≥50 years with diabetes with ≥1 additional risk factor for CVD (Primary Prevention Cohort)
- 2. Fasting TG levels ≥150 mg/dL and <500 mg/dL*
- LDL-C >40 mg/dL and ≤100 mg/dL and on stable statin therapy (± ezetimibe) for ≥4 weeks prior to qualifying measurements for randomization

*Due to the variability of triglycerides, a 10% allowance existing in the initial protocol, which permitted patients to be enrolled with qualifying triglycerides ≥135 mg/dL. protocol amendment 1 (May 2013) changed the lower limit of acceptable triglycerides from 150 mg/dL to 200 mg/dL, with no variability allowance. Adapted with permission[‡] from: Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of

Cardiovascular Events with Icosapent Ethyl-Intervention Trial. Clin Cardiol. 2017;40:138-148. [*https://creativecommons.org/licenses/by-nc/4.0/]

Inclusion Criteria for Secondary Prevention Cohort

One or more of the following:

- 1. Documented coronary artery disease
 - Multi vessel CAD (≥50% stenosis in ≥2 major epicardial coronary arteries with or without antecedent revascularization
 - Prior MI
 - Hospitalization for high-risk non-ST-segment elevation acute coronary syndrome with ST-segment deviation or biomarker positivity
- 2. Documented cerebrovascular or carotid disease
 - Prior ischemic stroke
 - Symptomatic carotid artery disease with ≥50% carotid arterial stenosis
 - Asymptomatic carotid artery disease with ≥70% carotid arterial stenosis
 - History of carotid revascularization
- 3. Documented peripheral artery disease
 - Ankle-brachial index <0.9 with symptoms of intermittent claudication
 - History of aorto-iliac or peripheral artery intervention

Adapted with permission[‡] from: Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial. *Clin Cardiol*. 2017;40:138-148. [[‡]https://creativecommons.org/licenses/by-nc/4.0/]

Inclusion Criteria for Primary Prevention Cohort

- 1. Diabetes mellitus requiring medication AND
- 2. ≥50 years of age AND
- 3. ≥1 additional risk factor for CVD
 - Men ≥55 years and women ≥65 years
 - Cigarette smoker or stopped smoking within 3 months
 - Hypertension (≥140 mmHg systolic OR ≥90 mmHg diastolic) or on antihypertensive medication;
 - HDL-C ≤40 mg/dL for men or ≤50 mg/dL for women
 - hsCRP >3.0 mg/L
 - Renal dysfunction: Creatinine clearance >30 and <60 mL/min
 - Retinopathy
 - Micro- or macroalbuminuria
 - ABI < 0.9 without symptoms of intermittent claudication

Patients with diabetes and CVD are counted under Secondary Prevention Cohort

Adapted with permission[‡] from: Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial. *Clin Cardiol*. 2017;40:138-148. [[‡]https://creativecommons.org/licenses/by-nc/4.0/]

Key Exclusion Criteria

1. Severe (NYHA class IV) heart failure

- 2. Severe liver disease
- 3. History of pancreatitis
- 4. Hypersensitivity to fish and/or shellfish

Adapted with permission[‡] from: Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial. *Clin Cardiol.* 2017;40:138-148. [[‡]https://creativecommons.org/licenses/by-nc/4.0/]

CONSORT Diagram

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018.

Median trial follow up duration was 4.9 years.

reduce-it

REDUCE-IT Study PI and Committees

Global Principal Investigator and Steering Committee Chair

Deepak L. Bhatt MD, MPH, Professor of Medicine at Harvard Medical School, Executive Director of Interventional Cardiovascular Programs at Brigham and Women's Hospital Heart & Vascular Center, and the Global Principal Investigator and Steering Committee Chair of REDUCE-IT

Steering Committee

Deepak L. Bhatt MD, MPH (Chair and Global Principal Investigator), Christie M. Ballantyne MD, Eliot A. Brinton MD, Terry A. Jacobson MD, Michael Miller MD, Ph. Gabriel Steg MD, Jean-Claude Tardif MD

Data Monitoring Committee

Brian Olshansky MD (Chair), Mina Chung MD, Al Hallstrom PhD, Lesly A. Pearce MS (non-voting independent statistician)

Independent Statistical Center Support for Data Monitoring Committee: Cyrus Mehta PhD, Rajat Mukherjee PhD

Clinical Endpoint Committee

C. Michael Gibson MD, MS (Chair), Anjan K. Chakrabarti MD, MPH, Eli V. Gelfand MD, Robert P. Giugliano MD, SM, Megan Carroll Leary MD, Duane S. Pinto MD, MPH, Yuri B. Pride MD

Key Baseline Characteristics

	Icosapent Ethyl (N=4089)	Placebo (N=4090)
Age (years), Median (Q1-Q3)	64.0 (57.0 - 69.0)	64.0 (57.0 - 69.0)
Female, n (%)	1162 (28.4%)	1195 (29.2%)
Non-White, n (%)	398 (9.7%)	401 (9.8%)
Westernized Region, n (%)	2906 (71.1%)	2905 (71.0%)
CV Risk Category, n (%)		
Secondary Prevention Cohort	2892 (70.7%)	2893 (70.7%)
Primary Prevention Cohort	1197 (29.3%)	1197 (29.3%)
Ezetimibe Use, n (%)	262 (6.4%)	262 (6.4%)
Statin Intensity, n (%)		
Low	254 (6.2%)	267 (6.5%)
Moderate	2533 (61.9%)	2575 (63.0%)
High	1290 (31.5%)	1226 (30.0%)
Type 2 Diabetes, n (%)	2367 (57.9%)	2363 (57.8%)
Triglycerides (mg/dL), Median (Q1-Q3)	216.5 (176.5 - 272.0)	216.0 (175.5 - 274.0)
HDL-C (mg/dL), Median (Q1-Q3)	40.0 (34.5 - 46.0)	40.0 (35.0 - 46.0)
LDL-C (mg/dL), Median (Q1-Q3)	74.0 (61.5 - 88.0)	76.0 (63.0 - 89.0)
Triglycerides Category		
<150 mg/dL	412 (10.1%)	429 (10.5%)
150 to <200 mg/dL	1193 (29.2%)	1191 (29.1%)
≥200 mg/dL	2481 (60.7%)	2469 (60.4%)

Effects on Biomarkers from Baseline to Year 1

	Icosapeı (N=4) Med	nt Ethyl 089) ian	Place (N=4) Med	ebo 090) ian	Median Betw	veen Group Di at Year 1	fference
Biomarker*	Baseline	Year 1	Baseline	Year 1	Absolute Change from Baseline	% Change from Baseline	% Change P-value
Triglycerides (mg/dL)	216.5	175.0	216.0	221.0	-44.5	-19.7	<0.0001
Non-HDL-C (mg/dL)	118.0	113.0	118.5	130.0	-15.5	-13.1	<0.0001
LDL-C (mg/dL)	74.0	77.0	76.0	84.0	-5.0	-6.6	<0.0001
HDL-C (mg/dL)	40.0	39.0	40.0	42.0	-2.5	-6.3	<0.0001
Apo B (mg/dL)	82.0	80.0	83.0	89.0	-8.0	-9.7	<0.0001
hsCRP (mg/L)	2.2	1.8	2.1	2.8	-0.9	-39.9	<0.0001
Log hsCRP (mg/L)	0.8	0.6	0.8	1.0	-0.4	-22.5	<0.0001
EPA (µg/mL)	26.1	144.0	26.1	23.3	+114.9	+358.8	<0.0001

*Apo B and hsCRP were measured at Year 2.

Primary End Point: CV Death, MI, Stroke, Coronary Revasc, Unstable Angina

Hazard Ratio, 0.75 (95% Cl, 0.68–0.83) RRR = 24.8% ARR = 4.8% NNT = 21 (95% Cl, 15–33) P=0.0000001

uce-it

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018. Bhatt DL. AHA 2018, Chicago.

Key Secondary End Point: CV Death, MI, Stroke

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018. Bhatt DL. AHA 2018, Chicago.

Primary End Point in Subgroups

End Point/Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl	Placebo	HR (95% CI)	Int P Val
		n/N (%)	n/N (%)		
Primary Composite End Point (ITT)		705/4089 (17.2%)	901/4090 (22.0%)	0.75 (0.68–0.83)	
Subgroup					
Risk Category Secondary Prevention Cohort Primary Prevention Cohort	━₊	559/2892 (19.3%) 146/1197 (12.2%)	738/2893 (25.5%) 163/1197 (13.6%)	0.73 (0.65–0.81) 0.88 (0.70–1.10)	0.14
Region Western Eastern Asia Pacific		551/2906 (19.0%) 143/1053 (13.6%) 11/130 (8.5%)	713/2905 (24.5%) 167/1053 (15.9%) 21/132 (15.9%)	0.74 (0.66–0.83) 0.84 (0.67–1.05) 0.49 (0.24–1.02)	0.30
Ezetimibe Use No Yes		649/3827 (17.0%) 56/262 (21.4%)	834/3828 (21.8%) 67/262 (25.6%)	0.75 (0.67–0.83) 0.82 (0.57–1.16)	0.64
Sex Male Female		551/2927 (18.8%) 154/1162 (13.3%)	715/2895 (24.7%) 186/1195 (15.6%)	0.73 (0.65–0.82) 0.82 (0.66–1.01)	0.33
White vs Non-White White Non-White	<u>+</u> =	646/3691 (17.5%) 59/398 (14.8%)	812/3688 (22.0%) 89/401 (22.2%)	0.77 (0.69–0.85) 0.60 (0.43–0.83)	0.18
Age Group <65 Years ≥65 Years	- - -	322/2232 (14.4%) 383/1857 (20.6%)	460/2184 (21.1%) 441/1906 (23.1%)	0.65 (0.56–0.75) 0.87 (0.76–1.00)	0.004
US vs Non-US US Non-US		281/1548 (18.2%) 424/2541 (16.7%)	394/1598 (24.7%) 507/2492 (20.3%)	0.69 (0.59–0.80) 0.80 (0.71–0.91)	0.14
Baseline Diabetes Diabetes No Diabetes	*	433/2394 (18.1%) 272/1695 (16.0%)	536/2393 (22.4%) 365/1694 (21.5%)	0.77 (0.68–0.87) 0.73 (0.62–0.85)	0.56
Baseline eGFR <60 mL/min/1.73m ² 60-≪90 mL/min/1.73m ² ≥90 mL/min/1.73m ²	<u>*</u>	197/905 (21.8%) 380/2217 (17.1%) 128/963 (13.3%)	263/911 (28.9%) 468/2238 (20.9%) 170/939 (18.1%)	0.71 (0.59–0.85) 0.80 (0.70–0.92) 0.70 (0.56–0.89)	0.41
Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL	- <u>+</u>	430/2481 (17.3%) 275/1605 (17.1%)	559/2469 (22.6%) 342/1620 (21.1%)	0.73 (0.64–0.83) 0.79 (0.67–0.93)	0.45
Baseline Triglycerides ≥150 vs <150 mg/dL Triglycerides ≥150 mg/dL Triglycerides <150 mg/dL		640/3674 (17.4%) 65/412 (15.8%)	811/3660 (22.2%) 90/429 (21.0%)	0.75 (0.68–0.83) 0.79 (0.57–1.09)	0.83
Baseline Triglycerides ≥200 and HDL-C ≤35 mg/d Yes No	└ ── ─	149/823 (18.1%) 554/3258 (17.0%)	214/794 (27.0%) 687/3293 (20.9%)	0.62 (0.51–0.77) 0.79 (0.71–0.88)	0.04
Baseline Statin Intensity High Moderate Low	-=	232/1290 (18.0%) 424/2533 (16.7%) 48/254 (18.9%)	310/1226 (25.3%) 543/2575 (21.1%) 45/267 (16.9%)	0.69 (0.58–0.82) 0.76 (0.67–0.86) 1.12 (0.74–1.69)	0.12
Baseline LDL-C (Derived) by Tertiles ≤67 mg/dL >67-≤84 mg/dL >84 mg/dL		244/1481 (16.5%) 248/1347 (18.4%) 213/1258 (16.9%)	302/1386 (21.8%) 307/1364 (22.5%) 292/1339 (21.8%)	0.72 (0.61–0.85) 0.81 (0.68–0.96) 0.74 (0.62–0.89)	0.62
Baseline hsCRP ≤2 vs >2 mg/L ≤2 mg/L >2 mg/L		288/1919 (15.0%) 417/2167 (19.2%)	407/1942 (21.0%) 494/2147 (23.0%)	0.68 (0.58–0.79) 0.81 (0.71–0.93)	0.07
	0.2 0.6 1.0 1.4 1.8				

Key Secondary End Point in Subgroups Generation

End Point/Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl	Placebo	HR (95% CI)*	Int P Val
		n/N (%)	n/N (%)		
Key Secondary Composite Endpoint (ITT)	-8-	459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65-0.83)	
Subgroup					
Risk Category Secondary Prevention Cohort Primary Prevention Cohort		361/2892 (12.5%) 98/1197 (8.2%)	489/2893 (16.9%) 117/1197 (9.8%)	0.72 (0.63–0.82) 0.81 (0.62–1.06)	0.41
Region Western Eastern Asia Pacific		358/2906 (12.3%) 93/1053 (8.8%) 8/130 (6.2%)	473/2905 (16.3%) 117/1053 (11.1%) 16/132 (12.1%)	0.73 (0.64–0.84) 0.78 (0.59–1.02) 0.47 (0.20–1.10)	0.54
Ezetimibe Use No Yes	<u> </u>	426/3827 (11.1%) 33/262 (12.6%)	569/3828 (14.9%) 37/262 (14.1%)	0.73 (0.64–0.82) 0.87 (0.54–1.39)	0.46
Sex Male Female		353/2927 (12.1%) 106/1162 (9.1%)	474/2895 (16.4%) 132/1195 (11.0%)	0.72 (0.62–0.82) 0.80 (0.62–1.03)	0.44
White vs Non-White White Non-White	*	418/3691 (11.3%) 41/398 (10.3%)	538/3688 (14.6%) 68/401 (17.0%)	0.76 (0.67–0.86) 0.55 (0.38–0.82)	0.13
Age Group <65 Years ≥65 Years		200/2232 (9.0%) 259/1857 (13.9%)	290/2184 (13.3%) 316/1906 (16.6%)	0.65 (0.54–0.78) 0.82 (0.70–0.97)	0.06
US vs Non-US US Non-US		187/1548 (12.1%) 272/2541 (10.7%)	266/1598 (16.6%) 340/2492 (13.6%)	0.69 (0.57–0.83) 0.77 (0.66–0.91)	0.38
Baseline Diabetes Diabetes No Diabetes		286/2394 (11.9%) 173/1695 (10.2%)	391/2393 (16.3%) 215/1694 (12.7%)	0.70 (0.60–0.81) 0.80 (0.65–0.98)	0.29
Baseline eGFR <60 mL/min/1.73m ² 60-<90 mL/min/1.73m ² ≥90 mL/min/1.73m ²	李	152/905 (16.8%) 229/2217 (10.3%) 78/963 (8.1%)	205/911 (22.5%) 296/2238 (13.2%) 105/939 (11.2%)	0.71 (0.57–0.88) 0.77 (0.64–0.91) 0.70 (0.52–0.94)	0.77
Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL	<u>_</u>	290/2481 (11.7%) 169/1605 (10.5%)	371/2469 (15.0%) 235/1620 (14.5%)	0.75 (0.65–0.88) 0.71 (0.58–0.86)	0.62
Baseline Triglycerides ≥150 vs <150 mg/dL Triglycerides ≥150 mg/dL Triglycerides <150 mg/dL		421/3674 (11.5%) 38/412 (9.2%)	546/3660 (14.9%) 60/429 (14.0%)	0.74 (0.65–0.84) 0.66 (0.44–0.99)	0.68
Baseline Triglycerides ≥200 and HDL-C ≤35 mg/dL Yes No		101/823 (12.3%) 356/3258 (10.9%)	136/794 (17.1%) 470/3293 (14.3%)	0.68 (0.53–0.88) 0.75 (0.65–0.86)	0.50
Baseline Statin Intensity High Moderate Low	- <u>+</u>	151/1290 (11.7%) 270/2533 (10.7%) 37/254 (14.6%)	210/1226 (17.1%) 361/2575 (14.0%) 32/267 (12.0%)	0.66 (0.54–0.82) 0.74 (0.63–0.87) 1.20 (0.74–1.93)	0.10
Baseline LDL-C (Derived) by Tertiles ≤67 mg/dL >67-≲84 mg/dL >84 mg/dL		157/1481 (10.6%) 157/1347 (11.7%) 145/1258 (11.5%)	196/1386 (14.1%) 208/1364 (15.2%) 202/1339 (15.1%)	0.73 (0.59–0.90) 0.75 (0.61–0.93) 0.74 (0.60–0.91)	0.97
Baseline hsCRP ≤2 vs >2 mg/L ≤2 mg/L >2 mg/L		183/1919 (9.5%) 276/2167 (12.7%)	245/1942 (12.6%) 361/2147 (16.8%)	0.73 (0.61–0.89) 0.73 (0.63–0.86)	0.97
	0.2 0.6 1.0 1.4 1. Icosapent Ethyl Better Placebo Better	8			

Key Secondary End Point in Subgroups Gene-it

	End Point/Subgroup Key Secondary Composite Endpoint (ITT) Subgroup Risk Category Secondary Prevention Cohort	Hazard Ratio (95% CI)	Icosapent Ethyl n/N (%) 459/4089 (11.2%) 361/2892 (12.5%)	Placebo n/N (%) 606/4090 (14.8%)	HR (95% CI)* Int P Val 0.74 (0.65–0.83) 0.72 (0.63–0.82)		
	Primary Prevention Cohort Region Western Eastern Asia Pacific		98/197 (8.2%) 358/2906 (12.3%) 93/1053 (8.8%) 8/130 (6.2%)	117/1197 (9.8%) 473/2905 (16.3%) 117/1053 (11.1%) 16/132 (12.1%)	0.81 (0.62–1.06) 0.54 0.73 (0.64–0.84) 0.78 (0.59–1.02) 0.47 (0.20–1.10)		
Subgroup		Hazard Ratio (95% CI)	Icosapent Eth n/N (%)	yl	Placebo n/N (%)	HR (95% CI)	Int P Val
Risk Category Secondary Prevention Co Primary Prevention Cohor	hort – t –	e	361/2892 (12.5 98/1197 (8.2%	%) 48 5) 1 ⁻	9/2893 (16.9%) 17/1197 (9.8%)	0.72 (0.63–0.82) 0.81 (0.62–1.06)	0.41
	Diabetes No Diabetes Baseline eGFR		286/2394 (11.9%) 173/1695 (10.2%)	391/2393 (16.3%) 215/1694 (12.7%)	0.70 (0.60–0.81) 0.80 (0.65–0.98) 0.77		
	<60 mL/min/1.73m² 60-<90 mL/min/1.73m² ≥90 mL/min/1.73m²		152/905 (16.8%) 229/2217 (10.3%) 78/963 (8.1%)	205/911 (22.5%) 296/2238 (13.2%) 105/939 (11.2%)	0.71 (0.57–0.88) 0.77 (0.64–0.91) 0.70 (0.52–0.94)		
	Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL		290/2481 (11.7%) 169/1605 (10.5%)	371/2469 (15.0%) 235/1620 (14.5%)	0.62 0.75 (0.65–0.88) 0.71 (0.58–0.86)		
	Baseline Triglycerides ≥150 vs <150 mg/dL Triglycerides ≥150 mg/dL Triglycerides <150 mg/dL		421/3674 (11.5%) 38/412 (9.2%)	546/3660 (14.9%) 60/429 (14.0%)	0.68 0.74 (0.65–0.84) 0.66 (0.44–0.99)		
	Baseline Triglycerides ≥200 and HDL-C ≾35 mg/dL Yes No		101/823 (12.3%) 356/3258 (10.9%)	136/794 (17.1%) 470/3293 (14.3%)	0.50 0.68 (0.53–0.88) 0.75 (0.65–0.86)		
	Baseline Statin Intensity High Moderate Low		151/1290 (11.7%) 270/2533 (10.7%) 37/254 (14.6%)	210/1226 (17.1%) 361/2575 (14.0%) 32/267 (12.0%)	0.10 0.66 (0.54–0.82) 0.74 (0.63–0.87) 1.20 (0.74–1.93)		
	Baseline LDL-C (Derived) by Tertiles \$67 mg/dL >67-584 mg/dL >84 mg/dL	=	157/1481 (10.6%) 157/1347 (11.7%) 145/1258 (11.5%)	196/1386 (14.1%) 208/1364 (15.2%) 202/1339 (15.1%)	0.97 0.73 (0.59–0.90) 0.75 (0.61–0.93) 0.74 (0.60–0.91)		
	Baseline hsCRP ≤2 vs >2 mg/L ≤2 mg/L >2 mg/L	=	183/1919 (9.5%) 276/2167 (12.7%)	245/1942 (12.6%) 361/2147 (16.8%)	0.97 0.73 (0.61–0.89) 0.73 (0.63–0.86)		
	(0.2 0.6 1.0	1.4 1.8				
		Icosapent Ethyl Better Place	oo Better				

Key Secondary End Point in Subgroups Genee-it

End Point/Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl	Placebo	HR (95% CI)*	Int P Val
		n/N (%)	n/N (%)		
Key Secondary Composite Endpoint (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	
Subgroup					
Risk Category Secondary Prevention Cohort Primary Prevention Cohort		361/2892 (12.5%) 98/1197 (8.2%)	489/2893 (16.9%) 117/1197 (9.8%)	0.72 (0.63–0.82) 0.81 (0.62–1.06)	0.41
Region Western Eastern Asia Pacific		358/2906 (12.3%) 93/1053 (8.8%) 8/130 (6.2%)	473/2905 (16.3%) 117/1053 (11.1%) 16/132 (12.1%)	0.73 (0.64–0.84) 0.78 (0.59–1.02) 0.47 (0.20–1.10)	0.54
Ezetimibe Use No Yes		426/3827 (11.1%) 33/262 (12.6%)	569/3828 (14.9%) 37/262 (14.1%)	0.73 (0.64–0.82) 0.87 (0.54–1.39)	0.46
Sex Male Female		353/2927 (12.1%) 106/1162 (9.1%)	474/2895 (16.4%) 132/1195 (11.0%)	0.72 (0.62–0.82) 0.80 (0.62–1.03)	0.44

Key Secondary End Point in Subgroups Gene-it

End Poir	nt/Subgroup	Hazard Rati	o (95% CI)	Icosapent Ethyl	Placebo	HR (95% CI)*	Int P Val
				n/N (%)	n/N (%)		
Key Seconda	ary Composite Endpoint (ITT)			459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	
Subgroup							
Risk Cate Se Pri	egory condary Prevention Cohort imary Prevention Cohort		_	361/2892 (12.5%) 98/1197 (8.2%)	489/2893 (16.9%) 117/1197 (9.8%)	0.72 (0.63–0.82) 0.81 (0.62–1.06)	0.41
Region We Ea Asi	estern Istern ia Pacific		<u> </u>	358/2906 (12.3%) 93/1053 (8.8%) 8/130 (6.2%)	473/2905 (16.3%) 117/1053 (11.1%) 16/132 (12.1%)	0.73 (0.64–0.84) 0.78 (0.59–1.02) 0.47 (0.20–1.10)	0.54
Ezetimibe No Yes	e Use) Is	<u></u>		426/3827 (11.1%) 33/262 (12.6%)	569/3828 (14.9%) 37/262 (14.1%)	0.73 (0.64–0.82) 0.87 (0.54–1.39)	0.46
Sex Ma Fei	ale male			353/2927 (12.1%) 106/1162 (9.1%)	474/2895 (16.4%) 132/1195 (11.0%)	0.72 (0.62–0.82) 0.80 (0.62–1.03)	0.44
White vs I Wh No	Non-White hite vn-White			418/3691 (11.3%) 41/398 (10.3%)	538/3688 (14.6%) 68/401 (17.0%)	0.76 (0.67–0.86) 0.55 (0.38–0.82)	0.13
Age Grou <6 ≥6	ip 5 Years 5 Years			200/2232 (9.0%) 259/1857 (13.9%)	290/2184 (13.3%) 316/1906 (16.6%)	0.65 (0.54–0.78) 0.82 (0.70–0.97)	0.06
US vs No US No	n-US S n-US			187/1548 (12.1%) 272/2541 (10.7%)	266/1598 (16.6%) 340/2492 (13.6%)	0.69 (0.57–0.83) 0.77 (0.66–0.91)	0.38

Subgroup		Hazard Ratio (95% CI)	Icosapent Ethyl n/N (%)	Placebo n/N (%)	HR (95% CI)	Int P Val
US vs Non-US US Non-US	-	- a	187/1548 (12.1%) 272/2541 (10.7%)	266/1598 (16.6%) 340/2492 (13.6%)	0.69 (0.57–0.83) 0.77 (0.66–0.91)	0.38
	Baseline LDL-C (Derived) by Tertiles ≤67 mg/dL >67-584 mg/dL >84 mg/dL	ŧ	157/1481 (10.6%) 196/138 157/1347 (11.7%) 208/136 145/1258 (11.5%) 202/133	0.97 6(14.1%) 0.73 (0.59–0.90) 4(15.2%) 0.75 (0.61–0.93) 9(15.1%) 0.74 (0.60–0.91)		
	Baseline hsCRP ≤2 vs >2 mg/L ≤2 mg/L >2 mg/L	0.2 0.6 1.0	183/1919 (9.5%) 245/194 276/2167 (12.7%) 361/214 1.4 1.8	0.97 2 (12.6%) 0.73 (0.61–0.89) 7 (16.8%) 0.73 (0.63–0.86)		
		Icosapent Ethyl Better Place	bo Better			

Key Secondary End Point in Subgroups Genee-it

End Point/Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl	Placebo	HR (95% CI)*	Int P Val
		n/N (%)	n/N (%)		
Key Secondary Composite Endpoint (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	
Subgroup					
Risk Category Secondary Prevention Cohort Primary Prevention Cohort		361/2892 (12.5%) 98/1197 (8.2%)	489/2893 (16.9%) 117/1197 (9.8%)	0.72 (0.63–0.82) 0.81 (0.62–1.06)	0.41
Region Western Eastern Asia Pacific		358/2906 (12.3%) 93/1053 (8.8%) 8/130 (6.2%)	473/2905 (16.3%) 117/1053 (11.1%) 16/132 (12.1%)	0.73 (0.64–0.84) 0.78 (0.59–1.02) 0.47 (0.20–1.10)	0.54
Ezetimibe Use No Yes		426/3827 (11.1%) 33/262 (12.6%)	569/3828 (14.9%) 37/262 (14.1%)	0.73 (0.64–0.82) 0.87 (0.54–1.39)	0.46
Sex Male Female		353/2927 (12.1%) 106/1162 (9.1%)	474/2895 (16.4%) 132/1195 (11.0%)	0.72 (0.62–0.82) 0.80 (0.62–1.03)	0.44
White vs Non-White White Non-White		418/3691 (11.3%) 41/398 (10.3%)	538/3688 (14.6%) 68/401 (17.0%)	0.76 (0.67–0.86) 0.55 (0.38–0.82)	0.13
Age Group <65 Years ≥65 Years		200/2232 (9.0%) 259/1857 (13.9%)	290/2184 (13.3%) 316/1906 (16.6%)	0.65 (0.54–0.78) 0.82 (0.70–0.97)	0.06
US vs Non-US US Non-US		187/1548 (12.1%) 272/2541 (10.7%)	266/1598 (16.6%) 340/2492 (13.6%)	0.69 (0.57–0.83) 0.77 (0.66–0.91)	0.38
Baseline Diabetes Diabetes No Diabetes		286/2394 (11.9%) 173/1695 (10.2%)	391/2393 (16.3%) 215/1694 (12.7%)	0.70 (0.60–0.81) 0.80 (0.65–0.98)	0.29
Baseline eGFR <60 mL/min/1.73m ² 60<90 mL/min/1.73m ² ≥90 mL/min/1.73m ²		152/905 (16.8%) 229/2217 (10.3%) 78/963 (8.1%)	205/911 (22.5%) 296/2238 (13.2%) 105/939 (11.2%)	0.71 (0.57–0.88) 0.77 (0.64–0.91) 0.70 (0.52–0.94)	0.77

Key Secondary End Point in Subgroups Gene-it

NN (%) NN (%) Key Score (TT) 4994499 (11.2%) 6094499 (14.3%) 0.74 (0.65-0.8%) Subgroup Selegroup 5912920 (12.5%) 48920830 (18.9%) 0.72 (0.65-0.8%) Rick Callsgoy Premision Cohoot 991079 (22.9%) 48920830 (18.9%) 0.72 (0.65-0.8%) 0.61 (0.62-1.8%) Riggion 991050 (12.5%) 4792050 (12.3%) 0.73 (0.65-0.8%) 0.73 (0.65-0.8%) Riggion 991050 (12.5%) 4792050 (18.9%) 0.73 (0.65-0.8%) 0.73 (0.65-0.8%) Eastern Selecc 991050 (18.2%) 177/1159 (11.1%) 0.73 (0.65-0.8%) 0.73 (0.65-0.8%) Window 991050 (18.2%) 177/1159 (11.1%) 0.73 (0.65-0.8%) 0.73 (0.65-0.8%) No No 991050 (18.1%) 0.72 (0.65-0.8%) 0.64 No 991050 (18.1%) 0.73 (0.65-0.8%) 0.73 (0.65-0.8%) 0.64 No No 991050 (11.1%) 5972050 (12.3%) 0.93 (0.65-0.8%) 0.64 No 991050 (11.6%) 0.73 (0.65-0.8%) 0.67 (0.65-0.8%) 0.67 (0.65-0.8%) 0.68 Sole Sole 991050 (11.1%) 5920207 (11.1%) 5930580 (11.5%) 0.68 (0.	End Point/Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl	Placebo	HR (95% CI)*	Int P Val
Key Secondary Composite Endpoint (ITT) 4594089 (11.2%) 6694090 (14.3%) 0.74 (0.65-0.83) Subgroup 381/2892 (12.5%) 489/2893 (16.3%) 0.72 (0.83-0.82) 0.41 Res Congroy 381/2892 (12.5%) 489/2893 (16.3%) 0.73 (0.64-0.81) 0.41 Region 381/2892 (12.5%) 479/2905 (16.3%) 0.73 (0.64-0.81) 0.74 Region 381/2892 (11.1%) 0.73 (0.64-0.81) 0.73 (0.64-0.81) 0.73 (0.64-0.81) No 381/2892 (11.1%) 569/3828 (14.5%) 0.73 (0.64-0.81) 0.46 No 32022 (12.1%) 474/2885 (16.3%) 0.73 (0.64-0.81) 0.46 No 32022 (12.1%) 474/2885 (14.5%) 0.73 (0.64-0.81) 0.46 No 32022 (12.1%) 474/2885 (16.3%) 0.76 (0.7-0.81) 0.46 No 3202182 (11.3%) 533/2888 (14.6%) 0.76 (0.7-0.81) 0.46 <t< td=""><td></td><td></td><td>n/N (%)</td><td>n/N (%)</td><td></td><td></td></t<>			n/N (%)	n/N (%)		
Subgroup 0.11 Risk Cargory 96/197 (02.3%) 92/197 (02.6%) 0.27 (05-0.68) 0.21 Region 96/197 (02.3%) 472/2905 (16.3%) 0.27 (05-0.68) 0.21 Region 98/197 (02.3%) 472/2905 (16.3%) 0.27 (05-0.68) 0.21 Region 98/197 (02.3%) 117/107 (01.5%) 0.21 (05-0.18) 0.21 Region 98/197 (02.3%) 117/107 (01.5%) 0.21 (05-0.18) 0.21 Region 98/197 (02.3%) 117/105 (11.5%) 0.27 (05-0.48) 0.41 No 98/197 (02.3%) 117/105 (11.5%) 0.27 (05-0.48) 0.41 No 98/197 (02.3%) 117/105 (11.5%) 0.27 (05-0.48) 0.41 No 98/197 (02.5%) 117/105 (11.5%) 0.27 (05-0.48) 0.41 No 98/197 (02.5%) 112/115 (11.0%) 0.28 (05-1.28) 0.41 No 98/197 (02.5%) 112/115 (11.0%) 0.28 (05-1.28) 0.41 No 98/197 (02.5%) 0.70 (05-0.48) 0.41 0.28 (05-0.29) 0.41 No 98/198 (11.5%) 0.27 (05-0.48) 0.41 0.29 (05-7.48) <t< td=""><td>Key Secondary Composite Endpoint (ITT)</td><td></td><td>459/4089 (11.2%)</td><td>606/4090 (14.8%)</td><td>0.74 (0.65–0.83)</td><td></td></t<>	Key Secondary Composite Endpoint (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	
Risk Category Primary Prevention Cohort Primary Prevention Cohort Primary Prevention Cohort 0.41 0.41 Rigon Watern Asia Paorlic 0.27 (0.03-0.02) 0.28 (0.02-1.03) 0.41 Rigon Watern Asia Paorlic 0.28 (0.02-0.03) 0.27 (0.03-0.02) 0.41 Rigon Watern Asia Paorlic 0.28 (0.02-0.03) 0.73 (0.04-0.04) 0.73 (0.04-0.04) 0.76 (0.02-0.02) Extimite Use No Yes 0.84 0.84 0.83 (0.032) (0.11,1%) 0.58 (0.02-0.02) 0.46 No Yes 0.87 (0.05-0.12) 0.73 (0.04-0.02) 0.46 0.46 0.47 (0.02-1.02) 0.46 No Yes 0.87 (0.05-0.02) 0.47 (0.02-1.02) 0.47 (0.02-1.02) 0.46 0.47 (0.02-1.02) 0.46 No Yes 0.87 (0.84-0.02) 0.47 (0.02-1.02) 0.46 0.47 (0.02-1.02) 0.47 (0.02-1.02) 0.47 (0.02-1.02) 0.47 (0.02-1.02) 0.47 (0.02-1.02) 0.47 (0.02-0.02) 0.44 No 1001112 (0.1%) 0.78 (0.62-0.02) 0.44 0.47 (0.02-0.02) 0.44 0.47 (0.02-0.02) 0.44 0.47 (0.02-0.02) 0.44 0.47 (0.02-0.02) 0.44 0.47 (0.02-0.02) 0.44 0.47 (0.02-0.02) 0.44 0.47 (0.02-0.02) 0.	Subgroup					
Regin 3582936 (12.35) 373226 (16.95) 0.30 (0.45-0.0) 0.41 Asia Pacific 383103 (0.25) 1717103 (11.15) 0.78 (0.52-0.0) 0.41 Ezetimible Use 383103 (0.25) 16132 (12.15) 0.47 (0.22-110) 0.46 No 4925282 (11.15) 5693288 (14.95) 0.73 (0.64-0.82) 0.46 Sex 3522927 (12.15) 474/2885 (16.45) 0.27 (0.62-0.82) 0.41 Male 4193281 (13.5) 533288 (14.65) 0.76 (0.67-0.8) 0.41 White vs Non-White 4193281 (13.5) 533288 (14.65) 0.56 (0.54-0.73) 0.41 No 4193281 (13.5) 533288 (14.65) 0.56 (0.54-0.73) 0.41 Sex Fernale 2002232 (0.05) 2002144 (13.35) 0.56 (0.54-0.73) 0.41 Vis Non-White 4193891 (13.5) 0.56 (0.54-0.73) 0.41	Risk Category Secondary Prevention Cohort Primary Prevention Cohort		361/2892 (12.5%) 98/1197 (8.2%)	489/2893 (16.9%) 117/1197 (9.8%)	0.72 (0.63–0.82) 0.81 (0.62–1.06)	0.41
Ezzimine Use 426/3827 (11.1%) 560/3628 (14.9%) 0.73 (0.64-0.67) 0.46 No 433/262 (12.6%) 57/262 (14.1%) 0.73 (0.64-0.67) 0.41 Male 550/362 (12.6%) 47/42895 (16.4%) 0.72 (0.62-0.82) 0.41 White vs Non-White 418/3991 (11.3%) 533/3688 (14.6%) 0.76 (0.67-0.6%) 0.13 Mo 418/3991 (11.3%) 533/3688 (14.6%) 0.76 (0.67-0.6%) 0.61 Mo 418/3991 (11.3%) 533/3688 (14.6%) 0.65 (0.54-0.78) 0.66 Sex 418/3991 (11.3%) 533/3688 (14.6%) 0.65 (0.54-0.78) 0.66 Sex Vears 200/2232 (0.0%) 290/2184 (13.3%) 0.65 (0.54-0.78) 0.66 US vs Non-US 259/1857 (13.9%) 316/1906 (16.6%) 0.68 (0.57-0.63) 0.38 US vs Non-US 286/2394 (11.9%) 290/2184 (13.3%) 0.07 (0.66-0.91) 0.76 US vs Non-US 286/2394 (11.9%) 291/2393 (16.3%) 0.07 (0.66-0.91) 0.29 Baseline Diabetes 286/2394 (11.9%) 291/2393 (16.3%) 0.77 (0.66-0.91) 0.77 Baseline GFR 4280/248 (11.7%) 257 (16.6%) 295/911 (22.5%)<	Region Western Eastern Asia Pacific		358/2906 (12.3%) 93/1053 (8.8%) 8/130 (6.2%)	473/2905 (16.3%) 117/1053 (11.1%) 16/132 (12.1%)	0.73 (0.64–0.84) 0.78 (0.59–1.02) 0.47 (0.20–1.10)	0.54
Sex Main Female 0.44 Main Female 132/127(12,1%) 1742895(16,4%) 0.76 (0.62-0.8) 0.13 White vs Non-White White Non-White 113/3591(11.3%) 533/368 (14.5%) 0.76 (0.67-0.8) 0.13 Age Group *65 Years 110/152 (2.1%) 174/24895(16.4%) 0.56 (0.54-0.7) 0.56 Vs Non-White White Non-US 110/152 (2.1%) 290/2184 (13.3%) 0.66 (0.57-0.8) 0.66 US vs Non-US US vs Non-US US Non-US 110/152 (2.1%) 266/1598 (16.6%) 0.66 (0.57-0.8) 0.38 Baseline Diabetes Diabetes Diabetes Diabetes Diabetes Diabetes Diabetes Diabetes 111/152 (2.1%) 266/1598 (16.6%) 0.70 (0.60-0.81) 0.29 Baseline CFR <0.00 m/min/1.73m² Bor-90 m/min/1.73m² 110/152 (2.1%) 215/1684 (12.7%) 0.70 (0.62-0.81) 0.29 Baseline Tigly conides 2200 vs <200 mg/dL Trgly conides 2200 vs <200 mg/dL	Ezetimibe Use No Yes		426/3827 (11.1%) 33/262 (12.6%)	569/3828 (14.9%) 37/262 (14.1%)	0.73 (0.64–0.82) 0.87 (0.54–1.39)	0.46
White vs Non-White White White Non-White 418/3691 (11.3%) 538/3688 (14.6%) 538/3688 (14.6%) 0.76 (0.67-0.86) 0.13 Age Group <65 Years 265 Years 200/2222 (9.0%) 200/2222 (9.0%) 200/2222 (9.0%) 0.66 (0.54-0.78) 0.66 US vs Non-US US vs Non-US US vs Non-US 200/2222 (9.0%) 200/2222 (10.5%) 200/2222 (10.5%) 0.66 (0.57-0.88) 0.66 US vs Non-US US vs Non-US 266/1598 (16.6%) 0.68 (0.57-0.88) 0.67 0.68 US vs Non-US US vs Non-US 266/1598 (16.6%) 0.69 (0.57-0.88) 0.77 (0.66-0.81) 0.78 Baseline Diabetes No Diabetes 266/2394 (11.9%) 391/2393 (16.3%) 0.77 (0.66-0.81) 0.29 Baseline Triglycendes 200 vs <200 mg/dL Triglycendes 200 vs <200 mg/dL Triglycendes 200 vs <200 mg/dL	Sex Male Female		353/2927 (12.1%) 106/1162 (9.1%)	474/2895 (16.4%) 132/1195 (11.0%)	0.72 (0.62–0.82) 0.80 (0.62–1.03)	0.44
Age Group -65 Years >65 Years	White vs Non-White White Non-White		418/3691 (11.3%) 41/398 (10.3%)	538/3688 (14.6%) 68/401 (17.0%)	0.76 (0.67–0.86) 0.55 (0.38–0.82)	0.13
US vs Non-US US Non-US 187/1548 (12.1%) 266/1598 (16.6%) 340/2492 (13.6%) 0.69 (0.57-0.83) 0.69 (0.57-0.83) 0.29 Baseline Diabetes Diabetes No Diabetes 286/2394 (11.9%) 215/1694 (12.7%) 391/2393 (16.3%) 2.55 (1694 (12.7%) 0.70 (0.60-0.81) 0.29 Baseline GFR 60~90 mL/min/1.73m ² 60~90 mL/min/1.73m ² 0.77 (0.66-0.91) 0.77 0.69 0.77 Baseline Triglycerides 2200 vs <200 mg/dL Triglycerides 2200 vs <200 mg/dL	Age Group <65 Years ≥65 Years		200/2232 (9.0%) 259/1857 (13.9%)	290/2184 (13.3%) 316/1906 (16.6%)	0.65 (0.54–0.78) 0.82 (0.70–0.97)	0.06
Baseline Diabetes Diabetes No Diabetes 0.70 (0.60-0.81) 0.70 (0.60-0.81) Baseline eGFR < 60 mL/min/1.73m ² 0.71 (0.57-0.88) 0.71 (0.57-0.88) 0.77 (0.64-0.91) Baseline Triglycerides 2200 mg/dL Triglycerides 2200 mg/dL 0.75 (0.65-0.88) 0.71 (0.57-0.88) 0.72 (0.64-0.91) Baseline Triglycerides 2200 mg/dL Triglycerides 2200 mg/dL 0.71 (0.57-0.88) 0.71 (0.57-0.88) 0.72 (0.64-0.91) Baseline Triglycerides 2200 mg/dL Triglycerides 2200 mg/dL 0.75 (0.65-0.88) 0.75 (0.65-0.88) 0.62 Baseline Triglycerides 2160 mg/dL 290/2481 (11.7%) 371/2469 (15.0%) 0.75 (0.65-0.88) 0.62 Baseline Triglycerides 2160 mg/dL 290/2481 (11.7%) 371/2469 (15.0%) 0.75 (0.65-0.88) 0.62 Baseline Triglycerides 2160 mg/dL 290/2481 (11.7%) 371/2469 (15.0%) 0.75 (0.65-0.88) 0.62 Baseline Triglycerides 2160 mg/dL 290/2481 (11.7%) 371/2469 (15.0%) 0.75 (0.65-0.88) 0.62 Baseline Triglycerides 2160 mg/dL 290/2481 (11.7%) 371/2469 (15.0%) 0.75 (0.65-0.88) 0.62 Baseline Triglycerides 2160 mg/dL 290/2481 (11.7%) 290/2481 (11.7%) 0.75 (0.65-0.88) 0.75 (0.65-0.88) 0.75 (0.65-0.88) 0.75 (0.65-0.88) <	US vs Non-US US Non-US		187/1548 (12.1%) 272/2541 (10.7%)	266/1598 (16.6%) 340/2492 (13.6%)	0.69 (0.57–0.83) 0.77 (0.66–0.91)	0.38
Baseline eGFR 0.77 <60 mL/min/1.73m ² 152/905 (16.8%) 205/911 (22.5%) 0.71 (0.57-0.81) 290 mL/min/1.73m ² 290 (22.38 (13.2%) 0.77 (0.64-0.91) 0.70 (0.52-0.94) Baseline Triglycerides 200 mg/dL 78/963 (8.1%) 105/939 (11.2%) 0.75 (0.65-0.88) Triglycerides 200 mg/dL 290/2481 (11.7%) 371/2469 (15.0%) 0.75 (0.65-0.88) 0.62 Baseline Triglycerides 200 mg/dL 169/1605 (10.5%) 235/1620 (14.5%) 0.71 (0.58-0.86) 0.62 Baseline Triglycerides 200 mg/dL 169/1605 (10.5%) 235/1620 (14.5%) 0.71 (0.58-0.86) 0.62	Baseline Diabetes Diabetes No Diabetes		286/2394 (11.9%) 173/1695 (10.2%)	391/2393 (16.3%) 215/1694 (12.7%)	0.70 (0.60–0.81) 0.80 (0.65–0.98)	0.29
Baseline Triglycerides 2200 mg/dL 0.62 Triglycerides 2200 mg/dL 290/2481 (11.7%) 371/2469 (15.0%) 0.75 (0.65-0.88) Baseline Triglycerides 2100 mg/dL 169/1605 (10.5%) 235/1620 (14.5%) 0.71 (0.58-0.86)	Baseline eGFR <60 mL/min/1.73m ² 60~<90 mL/min/1.73m ² ≥90 ml /min/1 73m ²		152/905 (16.8%) 229/2217 (10.3%) 78/963 (8.1%)	205/911 (22.5%) 296/2238 (13.2%) 105/939 (11.2%)	0.71 (0.57–0.88) 0.77 (0.64–0.91) 0.70 (0.52–0.94)	0.77
	Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL					

Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl n/N (%)	Placebo n/N (%)	HR (95% CI)	Int P Val
Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL —	-æ	290/2481 (11.7%) 169/1605 (10.5%)	371/2469 (15.0%) 235/1620 (14.5%)	0.75 (0.65–0.88) 0.71 (0.58–0.86)	0.62
	0.2 0.6 1.0	1.4 1.8			

Icosapent Ethyl Better Placebo Better

Key Secondary End Point in Subgroups Generation

End Point/Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl Placebo	HR (95% CI)*	Int P Val
		n/N (%) n/N (%)		
Key Secondary Composite Endpoint (ITT)		459/4089 (11.2%) 606/4090 (14.8%	6) 0.74 (0.65–0.83)	
Subgroup				
Risk Category Secondary Prevention Cohort Primary Prevention Cohort		361/2892 (12.5%) 489/2893 (16.9% 98/1197 (8.2%) 117/1197 (9.8%	6) 0.72 (0.63–0.82) 0.81 (0.62–1.06)	0.41
Region Western Eastern Asia Pacífic		358/2906 (12.3%) 473/2905 (16.3%) 93/1053 (8.8%) 117/1053 (11.1%) 8/130 (6.2%) 16/132 (12.1%)	6) 0.73 (0.64–0.84) 6) 0.78 (0.59–1.02) 0.47 (0.20–1.10)	0.54
Ezetimibe Use No Yes		426/3827 (11.1%) 569/3828 (14.9%) 33/262 (12.6%) 37/262 (14.1%)	6) 0.73 (0.64–0.82) 0.87 (0.54–1.39)	0.46
Sex Male Female		353/2927 (12.1%) 474/2895 (16.4% 106/1162 (9.1%) 132/1195 (11.0%	6) 0.72 (0.62–0.82) 6) 0.80 (0.62–1.03)	0.44
White vs Non-White White Non-White		418/3691 (11.3%) 538/3688 (14.6%) 41/398 (10.3%) 68/401 (17.0%)	6) 0.76 (0.67–0.86) 0.55 (0.38–0.82)	0.13
Age Group <65 Years ≥65 Years		200/2232 (9.0%) 290/2184 (13.3%) 259/1857 (13.9%) 316/1906 (16.6%)	6) 0.65 (0.54–0.78) 6) 0.82 (0.70–0.97)	0.06
US vs Non-US US Non-US		187/1548 (12.1%) 266/1598 (16.6%) 272/2541 (10.7%) 340/2492 (13.6%)	6) 0.69 (0.57–0.83) 6) 0.77 (0.66–0.91)	0.38
Baseline Diabetes Diabetes No Diabetes	- <u>-</u>	286/2394 (11.9%) 391/2393 (16.3%) 173/1695 (10.2%) 215/1694 (12.7%)	6) 0.70 (0.60–0.81) 6) 0.80 (0.65–0.98)	0.29
Baseline eGFR <60 mL/min/1.73m ² 60-≪90 mL/min/1.73m ² ≥90 mL/min/1.73m ²	<u></u>	152/905 (16.8%) 205/911 (22.5%) 229/2217 (10.3%) 296/2238 (13.2° 78/963 (8.1%) 105/939 (11.2%)) 0.71 (0.57–0.88) 6) 0.77 (0.64–0.91) 1) 0.70 (0.52–0.94)	0.77
Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL		290/2481 (11.7%) 371/2469 (15.0%) 169/1605 (10.5%) 235/1620 (14.5%)	6) 0.75 (0.65–0.88) 6) 0.71 (0.58–0.86)	0.62

Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl n/N (%)	Placebo n/N (%)	HR (95% CI)	Int P Val
Baseline Triglycerides ≥150 vs <150 mg/dL Triglycerides ≥150 mg/dL Triglycerides <150 mg/dL	-	421/3674 (11.5%) 38/412 (9.2%)	546/3660 (14.9%) 60/429 (14.0%)	0.74 (0.65–0.84) 0.66 (0.44–0.99)	0.68

Icosapent Ethyl Better Placebo Better

Prespecified Hierarchical Testing

Endpoint	Hazard Rat	tio Icosapent Ethyl	Placebo	Hazard Ratio (95% CI)	RRR	P-value
	(95% CI)	n/N (%)	n/N (%)			
Primary Composite (ITT)		705/4089 (17.2%)	901/4090 (22.0%)	0.75 (0.68–0.83)	25%▼	<0.001
Key Secondary Composite (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	26%▼	<0.001
Cardiovascular Death or Nonfatal Myocardial Infarction		392/4089 (9.6%)	507/4090 (12.4%)	0.75 (0.66–0.86)	25%▼	<0.001
Fatal or Nonfatal Myocardial Infarction		250/4089 (6.1%)	355/4090 (8.7%)	0.69 (0.58–0.81)	31%▼	<0.001
Urgent or Emergent Revascularization		216/4089 (5.3%)	321/4090 (7.8%)	0.65 (0.55–0.78)	35%▼	<0.001
Cardiovascular Death		174/4089 (4.3%)	213/4090 (5.2%)	0.80 (0.66–0.98)	20%▼	0.03
Hospitalization for Unstable Angina	_	108/4089 (2.6%)	157/4090 (3.8%)	0.68 (0.53–0.87)	32%▼	0.002
Fatal or Nonfatal Stroke	e	98/4089 (2.4%)	134/4090 (3.3%)	0.72 (0.55–0.93)	28%▼	0.01
Total Mortality, Nonfatal Myocardial Infarction, or Nonfatal Stroke		549/4089 (13.4%)	690/4090 (16.9%)	0.77 (0.69–0.86)	23%▼	<0.001
	0.4 1.0	1.4		RRR denotes re	lative risk	reduction
Bhatt DL. AHA 2018, Chicago. ^{Icosape}	ent Ethyl Better	Placebo Better	Bhatt DL, Ste	eg PG, Miller Μ, et al. Λ	l Engl J	<i>Med.</i> 2018

reduce-it

Prespecified Hierarchical Testing

reduce-it

Endpoint	Hazard Ratio	Icosapent Ethyl	Placebo	Hazard Ratio (95% CI)	RRR	P-value
	(95% Cl)	n/N (%)	n/N (%)			
Primary Composite (ITT)	-=-	705/4089 (17.2%)	901/4090 (22.0%)	0.75 (0.68–0.83)	25%▼	<0.001
Key Secondary Composite (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	26%▼	<0.001
Cardiovascular Death or Nonfatal Myocardial Infarction		392/4089 (9.6%)	507/4090 (12.4%)	0.75 (0.66–0.86)	25%▼	<0.001
Fatal or Nonfatal Myocardial Infarction		250/4089 (6.1%)	355/4090 (8.7%)	0.69 (0.58–0.81)	31%▼	<0.001
Urgent or Emergent Revascularization	_ _	216/4089 (5.3%)	321/4090 (7.8%)	0.65 (0.55–0.78)	35%▼	<0.001
Cardiovascular Death	_	174/4089 (4.3%)	213/4090 (5.2%)	0.80 (0.66–0.98)	20%▼	0.03
Hospitalization for Unstable Angina	_	108/4089 (2.6%)	157/4090 (3.8%)	0.68 (0.53–0.87)	32%▼	0.002
Fatal or Nonfatal Stroke	_	98/4089 (2.4%)	134/4090 (3.3%)	0.72 (0.55–0.93)	28%▼	0.01
Total Mortality, Nonfatal Myocardial Infarction, or Nonfatal Stroke		549/4089 (13.4%)	690/4090 (16.9%)	0.77 (0.69–0.86)	23%▼	<0.001
Total Mortality]	274/4089 (6.7%)	310/4090 (7.6%)	0.87 (0.74–1.02)	13%▼	0.09
	0.4 1.0	1.4		RRR denotes re	lative risk	reduction

Bhatt DL. AHA 2018, Chicago. Icosapent Ethyl Better

Placebo Better

REDUCE-IT Tertiary Revasc Endpoints

Revascularization Endpoint	Icosapent Ethyl n/N (%)	Placebo n/N (%)	Hazard Ratio (95% CI)
Coronary	376/4089 (9.2%)	544/4090 (13.3%)	0.66 (0.58, 0.76)
Emergent	41/4089 (1.0%)	65/4090 (1.6%)	0.62 (0.42, 0.92)
Urgent	181/4089 (4.4%)	268/4090 (6.6%)	0.66 (0.54, 0.79)
Elective	194/4089 (4.7%)	278/4090 (6.8%)	0.68 (0.57, 0.82)

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018. Bhatt DL. AHA 2018, Chicago.

Endpoint	Icosapent Ethyl n/N (%)	Placebo n/N (%)	Hazard Ratio (95% CI)
Cardiac Arrest	22/4089 (0.5%)	42/4090 (1.0%)	0.52 (0.31, 0.86)
Sudden Cardiac Death	61/4089 (1.5%)	87/4090 (2.1%)	0.69 (0.50, 0.96)

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018. Bhatt DL. AHA 2018, Chicago.

Treatment-Emergent Adverse Events

	Icosapent Ethyl (N=4089)	Placebo (N=4090)	P-value
Subjects with at Least One TEAE, n (%)	3343 (81.8%)	3326 (81.3%)	0.63
Serious TEAE	1252 (30.6%)	1254 (30.7%)	0.98
TEAE Leading to Withdrawal of Study Drug	321 (7.9%)	335 (8.2%)	0.60
Serious TEAE Leading to Withdrawal of Study Drug	88 (2.2%)	88 (2.2%)	1.00
Serious TEAE Leading to Death	94 (2.3%)	102 (2.5%)	0.61

Treatment-Emergent Adverse Event of Interest: Serious Bleeding

	Icosapent Ethyl (N=4089)	Placebo (N=4090)	P-value
Bleeding related disorders	111 (2.7%)	85 (2.1%)	0.06
Gastrointestinal bleeding	62 (1.5%)	47 (1.1%)	0.15
Central nervous system bleeding	14 (0.3%)	10 (0.2%)	0.42
Other bleeding	41 (1.0%)	30 (0.7%)	0.19

- No fatal bleeding events in either group
- Adjudicated hemorrhagic stroke no significant difference between treatments (13 icosapent ethyl versus 10 placebo; P=0.55)

Most Frequent Treatment-Emergent Adverse Events: ≥5% in Either Treatment Group and Significantly Different

	Icosapent Ethyl	Placebo	
Preferred Term	(N=4089)	(N=4090)	P-value
Diarrhea	367 (9.0%)	453 (11.1%)	0.002
Peripheral edema	267 (6.5%)	203 (5.0%)	0.002
Constipation	221 (5.4%)	149 (3.6%)	<0.001
Atrial fibrillation	215 (5.3%)	159 (3.9%)	0.003
Anemia	191 (4.7%)	236 (5.8%)	0.03

Adjudicated Events: Hospitalization for Atrial Fibrillation or Atrial Flutter

Primary System Organ Class Preferred Term	Icosapent Ethyl (N=4089)	Placebo (N=4090)	P-value
Positively Adjudicated Atrial Fibrillation/Flutter ^[1]	127 (3.1%)	84 (2.1%)	0.004

Note: Percentages are based on the number of subjects randomized to each treatment group in the Safety population (N).

All adverse events are coded using the Medical Dictionary for Regulatory Activities (MedDRA Version 20.1).

[1] Includes positively adjudicated Atrial Fibrillation/Flutter clinical events by the Clinical Endpoint Committee (CEC). P value was based on stratified log-rank test.

Achieved Triglyceride Levels: <150 mg/dL and ≥150 mg/dL

Limitations

Few patients on ezetimibe

• Though data appeared consistent in that subgroup

Concomitant PCSK9 inhibitors prohibited

• Though no reason to think they are not additive

Small difference (5 mg/dL) in LDL-C between groups

- Cannot tell from this study if due to drug or placebo
- Would not account for 25% RRR
- JELIS saw 19% RRR in open label design, no placebo
- Consistent benefit in patients with LDL-C ↑ vs no LDL-C ↑

Pending Questions

Cannot comment on mechanisms of benefit from this study

- Consistent reduction across triglyceride range (135-500)
- Similar benefit by 1-year triglycerides < or > 150 mg/dL
- Detailed biomarker and genetic analyses are planned

Cannot comment on cost-effectiveness

- Though with NNT of 21, likely cost-effective
- Formal cost-effectiveness analyses planned
- Full benefits not captured with only first events, await recurrent and total events analyses

Conclusions

Compared with placebo, icosapent ethyl 4g/day significantly reduced important CV events by **25%**, including:

- 20% reduction in death due to cardiovascular causes
- **31%** reduction in heart attack
- 28% reduction in stroke

Low rate of adverse effects, including:

- Small but significant increase in atrial fibrillation/flutter
- Non-statistically significant increase in serious bleeding

Consistent efficacy across multiple subgroups

- Including baseline triglycerides from 135-500 mg/dL
- Including secondary and primary prevention cohorts

We thank the investigators, the study coordinators, for and especially the 8,179 patients in **REDUCE-IT**!

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia

Deepak L. Bhatt, M.D., M.P.H., P. Gabriel Steg, M.D., Michael Miller, M.D., Eliot A. Brinton, M.D., Terry A. Jacobson, M.D., Steven B. Ketchum, Ph.D., Ralph T. Doyle, Jr., B.A., Rebecca A. Juliano, Ph.D., Lixia Jiao, Ph.D., Craig Granowitz, M.D., Ph.D., Jean-Claude Tardif, M.D., and Christie M. Ballantyne, M.D., for the REDUCE-IT Investigators*

> Article available at <u>https://www.nejm.org</u> Slides available for download at <u>https://professional.heart.org</u> or at <u>https://www.ACC.org</u>